• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-state hydro-pneumatic suspension system through the use of Magneto-Rheological (MR) valves

Grobler, Jacob Frederick January 2015 (has links)
This study is focused on modifying an existing solenoid valve based semi-active hydropneumatic spring-damper system using Magneto-Rheological (MR) fluid. The MR fluid's effective viscosity can be altered by application of a magnetic field. Therefore, using a magnetic/ MR valve makes it possible to change the state of the system by simply changing the applied magnetic field. A prototype MR valve was developed to determine whether a unit small enough for installation was possible. This prototype valve was designed from first principles and properties such as pressure drop over the valve (damping) and flow blocking (for switching between spring characteristics) were measured. The measured pressure drop over the valve was higher than what was design for which was due to an incorrect assumption for the viscosity of the thixotropic MR Fluid. The flow blocking ability of the valve was determined by constant force tests. Results showed that the valve could virtually block the flow of fluid for approximately a quarter of the vehicles weight. With the second prototype, the valve design and magnetic circuit design were improved. Two valves were constructed and implemented on a prototype suspension system. The damping characteristics of the system were lower than expected, however they can be improved by changing the valve geometry. The base spring characteristics are acceptable, however the higher spring characteristics fail when a high force is exerted on the strut that exceeds the valves flow blocking capability. The response time of the valve is not yet sufficient to make the system viable for real world implementation, especially under extreme conditions that can change more rapidly than the current valves. / Dissertation (MEng)--University of Pretoria, 2015. / Mechanical and Aeronautical Engineering / MEng / Unrestricted
2

Mechanical Integration of a Versatile Air Suspension Into a Powered Wheelchair

Steinkraus, Joel Michael 01 March 2012 (has links) (PDF)
Mechanical Integration of a Versatile Air Suspension into a Powered Wheelchair Joel Steinkraus It is undeniable that the vibration environment created by prolonged exposure to wheelchair use can cause discomfort for the rider and put him/her at risk of developing more severe medical conditions. While more research must be done to accurately quantify what constitues a harmful vibration environment, improved vibraiton isolation is an essential step. In order to incorporate structurally sound and effetive air suspension systems into motorized wheelchairs, a support structure is necessary. An after market wheelchair suspension system was designed, modeled, built and tested. Approximately 18 inches wide x 14 inches deep and 11 inches tall, the 50 lb suspension system uses a linear guide system and air spring to support the rider. A dashpot was added to prevent the amplification of the air spring’s natural frequency, and a pneumatic system installed to store and regulate the air pressure in the air spring and allow for a longer ride time. Testing of the system validates the mechanical durability of the design with respect to joint separation, plate bending, and bearing breakaway resistance. The penumatic system also is found to support up to 14 ingress/egress cycles before reaching a minimum functional pressure level. This value was achieved using an initial charge pressure of 100 PSI. Further environmental and user testing should be conducted to see if a greater number of ingress/egress cycles is necessary. Further development of the suspension system will incorporate a partially active controller for the air spring in order to to reduce the suspension’s transmisibility. Part respecificaitons are proposed in order to reduce system size and weight.
3

Tools and Techniques for Flow Characterization in the Development of Load Leveling Valves for Heavy Truck Application

Gupta, Yashvardhan 04 June 2018 (has links)
This research examines different techniques and proposes a Computational Fluid Dynamics (CFD) model as a robust tool for flow characterization of load leveling valves. The load leveling valve is a critical component of an air suspension system since it manages air spring pressure, a key function that directly impacts vehicle dynamic performance in addition to maintaining a static ride height. Efficiency of operation of a load leveling valve is established by its flow characteristics, a metric useful in determining suitability of the valve for application in a truck-suspension configuration and for comparison among similar products. The disk-slot type load leveling valve was chosen as the subject of this study due to its popularity in the heavy truck industry. Three distinct methods are presented to model and evaluate flow characteristics of a disk-slot valve. First is a theoretical formulation based on gas dynamic behavior through an orifice; second is an experimental technique in which a full pneumatic apparatus is used to collect instantaneous pressure data to estimate air discharge; and third is a CFD approach. Significant discrepancies observed between theoretically estimated results and experimental data suggest that the theoretical model is incapable of accurately capturing losses that occur during air flow. These variations diminish as the magnitude of discharge coefficient is altered. A detailed CFD model is submitted as an effective tool for load leveling valve flow characterization/analysis. This model overcomes the deficiencies of the theoretical model and improves the accuracy of simulations. A 2-D axisymmetric approximation of the real fluid domain is analyzed for flow characteristics using a Realizable k-ϵ turbulence model, scalable wall functions, and a pressure-based coupled algorithm with a second order discretization function. The CFD-generated results were observed to be in agreement with the experimental findings. CFD is found to be advantageous in the evaluation of flow characteristics as it furnishes precise data without the need to experimentally evaluate a physical model/prototype of the valve, thereby benefitting suspension engineers involved in the development and testing of load leveling valve designs. This document concludes with a sample case study which uses CFD to characterize flow in a modified disk-slot load leveling valve, and discusses the results in light of application on a heavy truck. / MS
4

Modeling, Control, and Design Study of Balanced Pneumatic Suspension for Improved Roll Stability in Heavy Trucks

Chen, Yang 03 May 2017 (has links)
This research investigates a novel arrangement to pneumatic suspensions that are commonly used in heavy trucks, toward providing a dynamically balanced system that resists body roll and provides added roll stability to the vehicle. The new suspension, referred to as "balanced suspension," is implemented by retrofitting a conventional pneumatic suspension with two leveling valves and a symmetric plumbing arrangement to provide a balanced airflow and air pressure in the airsprings. This new design contributes to a balanced force distribution among the axles, which enables the suspension to maintain the body in a leveled position both statically and dynamically. This is in contrast to conventional heavy truck pneumatic suspensions that are mainly adjusted quasi-statically to level the body in response to load variations. The main objectives of the research are to discover and analyze the effects of various pneumatic components on the suspension dynamic response and numerically study the benefits of the pneumatically balanced suspension system. A pneumatic suspension model is established to capture the details of airsprings, leveling valves, check valves, pipes, and air tank based on the laws of fluid mechanics and thermodynamics. Experiments are designed and conducted to help determine and verify the modeling parameters and components. Co-simulation technique is applied to establish a multi-domain model that couples highly non-linear fluid dynamics of the pneumatic suspension with complex multi-body dynamics of an articulated vehicle. The model is used to extensively study effects of pneumatic balanced control of the suspensions on the tractor and trailer combination dynamics. The simulations indicate that the dual leveling valve arrangement of the balanced suspension provides better adjustments to the body roll by charging the airsprings on the jounce side, while purging air from the rebound side. Such an adjustment allows maintaining a larger difference in suspension force from side to side, which resists the vehicle sway and levels the truck body during cornering. Additionally, the balanced suspension better equalizes the front and rear drive axle air pressures, for a better dynamic load sharing and pitch control. It is evident from the simulation results that the balanced suspension increases roll stiffness without affecting vertical stiffness, and thereby it can serve as an anti-roll bar that results in a more stable body roll during steering maneuvers. Moreover, the Failure Mode and Effects Analysis (FMEA) study suggests that when one side of the balanced suspension fails, the other side acts to compensate for the failure. On the other hand, if the trailer is also equipped with dual leveling valves, such an arrangement will bring an additional stabilizing effect to the vehicle in case of the tractor suspension failure. The overall research results presented show that significant improvements on vehicle roll dynamics and suspension dynamic responsiveness can be achieved from the balanced suspension system. / PHD
5

Achieving controllable continuous variable damping within a semi-active hydro-pneumatic suspension system

De Wet, Benjamin January 2020 (has links)
The compromise between ride comfort and handling for a passive suspension system is a well-known and often researched problem. Semi-active suspension systems offer significant improvements to this compromise. One example of a semi-active system, that can change both spring and damper characteristics between two discrete values is the 4-state semi-active hydro-pneumatic suspension system. This system can switch between a ”ride comfort mode” (soft spring and low damping) and a ”handling mode” (stiff spring and high damping) within 100ms, improving both ride comfort and handling. The discrete 4S4 could be improved upon further by adding continuous variable damping. Work on this topic showed great promise but also posed its challenges in achieving this in a safe and controllable manner. In order to make continuous variable damping a reality a new configuration for the 4S4 is proposed. This new configuration incorporates a blow-off damper in parallel with a proportional flow control valve. The system ensures that, in the highly non-linear closing region of the proportional flow control valve, adequate damping for handling is maintained and uncontrollable peak pressure differences are avoided. Experimental work conducted showed that the system was capable of achieving the required spring and variable damping characteristics in a safe and controllable manner. The experimental data was used for parametrizing and validating a physics based mathematical model of the suspension system. The mathematical model incorporates the: pressure drop vs: flow characteristics for both the blow-off and proportional valves, response time for the on-off valves as well as the gas pressure vs: flow characteristic incorporating the compressibility of the oil and thermal properties of the gas. This model can be used to make informed decisions on further prototype development or in full vehicle simulations. The system makes continuous variable damping possible ranging from the optimal damping characteristic for handling to the low damping characteristic required for ride comfort. The system also shows a significant reduction in friction. / Dissertation (MEng)--University of Pretoria, 2020. / VDG / University of Pretoria / Mechanical and Aeronautical Engineering / MEng / Unrestricted
6

Haul road defect identification and condition assessment using measured truck response

Hugo, Daniel 16 July 2008 (has links)
Mine haul road maintenance is traditionally done at scheduled intervals or after regular inspection. Both these methods can lead to unwarranted expenditure, either through over-maintaining the road, or failure to recognise significant deterioration, resulting in an increase in vehicle operating costs. Predictive maintenance management models for unpaved roads have been developed in recent years. These methods work well in a trivial environment where variables such as traffic volume can be predicted. However, many mining systems are too complex for such models to be effective. This work investigates the possibility of using haul truck response to aid haul road maintenance management. The approach adopted for the study was twofold: Firstly, can truck response data be used to recognise specific road defects, in terms of location, type and size? This is important since different defect types require different road maintenance strategies. Secondly, can road roughness be measured on a qualitative basis? With the emphasis on road defect reconstruction, a mathematical modelling approach was adopted. The truck was characterised in terms of its suspension and tyre properties. Dynamic truck response data was acquired during field measurements in which the vehicle was driven over defects of known dimensions. With these data sets available, mathematical modelling and simulation was possible. Quarter vehicle and seven degree of freedom vehicle models played a vital role in this work by laying a foundation in the use of haul truck response for the purpose of road defect reconstruction. A modelling methodology that is based on dynamic equilibrium of an independent front unsprung mass of the truck is proposed in which the vertical dynamic tyre force and eventually the road geometry is calculated. It is shown that defects can be reconstructed from measured truck response data with an accuracy sufficient to fulfil the requirements of defect recognition for road maintenance management purposes. Secondly, a preliminary investigation into the qualitative assessment of road condition via truck response measurements was conducted. The inherent response properties of the truck pertaining to road roughness measurement were studied and some correlation between measured suspension motion and road roughness measured with a high speed profilometer was found. / Dissertation (MEng (Mechanical))--University of Pretoria, 2005. / Mechanical and Aeronautical Engineering / MEng / Unrestricted
7

Evaluating the roll performance of a hydraulic-interconnected suspension system for an electric bus / Utvärdering av krängprestanda för ett hydrauliskt sammankopplat fjädringssystem för en elektrisk buss

Ramachandran, Dinesh January 2021 (has links)
Electric buses often have batteries installed on the roof structure to have a better space utilization. This increases the height of the centre of gravity of the vehicle, affecting its roll stability. The existing vehicle setup uses an anti-roll bar to provide the roll stiffness. However, increasing the roll stiffness of the anti-roll bar for providing the required roll stability of an electric bus is limited due to the increase in weight of the anti-roll bar, its material properties and the design constraints. An alternate for the air suspension system is identified through a literature study. The identified system, an interconnected hydro-pneumatic suspension, is modelled analytically and compared to the air spring system. Multi-body simulations are performed to understand the roll performance.\par The thesis work also estimates the system's energy efficiency, and the feasibility of packaging the system within the existing vehicle architecture is studied in CAD software. The roll gradient of the vehicle is shown to improve compared to the existing air-spring system. The study also find that implementation of hydraulic-interconnected system can result in reduction of the unsprung mass of the vehicle. / Elektriska bussar har ofta batterier installerade på takkonstruktionen för att få ett bättre utrymmesutnyttjande. Detta ökar fordonets tyngdpunktshöjd och påverkar dess krängstabilitet. Den befintliga fordonskonfigurationen använder en krängningshämmaren tillsammans med luftfjädrar för att ge den krängsstabilitet som krävs. Men att öka krängstyvheten hos krängningshämmaren för att ge den nödvändiga krängstabilitet hos en elektrisk buss är begränsad på grund av ökningen av vikten av krängningshämmaren, dess materialegenskaper och konstruktionsbegränsningar. Ett alternativ till luftfjädringssystemet identifieras genom en litteraturstudie. Det identifierade systemet, ett sammanlänkat hydro-pneumatiskt fjädringssystem, modelleras analytiskt och jämförs med luftfjädringssystemet. Multibody-simuleringar utförs för att förstå fordonets krängprestanda. par Avhandlingsarbetet uppskattar också systemets energieffektivitet och möjl-igheten att paketera systemet inom den befintliga fordonsarkitekturen studeras i CAD-programvara. Fordonets krängningsgradient har visat sig förbättras jämfört med det befintliga luftfjädringssystemet. I studien konstateras också att införandet av hydrauliskt sammankopplade system kan leda till en minskning av fordonets ofjädrade massa.

Page generated in 0.1137 seconds