Spelling suggestions: "subject:"poincaré's polyhedral theorem"" "subject:"poincaré's polyhedra theorem""
1 |
Fibrados de discos sobre superfícies uniformizados pelo bidisco hiperbólico / Disc bundles over surfaces uniformized by the hyperbolic bidiscCosta, Sidnei Furtado 27 June 2017 (has links)
Generalizando para o caso do bidisco hiperbólico as construções em (ANANIN; GROSSI; GUSEVISKII, 2011) e em (GROSSI, 2015), provamos que o fibrado trivial (tangente) sobre superfícies de gênero ≥ 1 (≥ 2) admite geometria modelada no bidisco hiperbólico. (O caso do fibrado trivial sobre o toro é particularmente curioso, pois a curvatura é nula na base e em cada fibra, mas não no fibrado.) Além do seu próprio valor intrínseco, estes exemplos se inserem no contexto da conjectura de Gromov, Lawson e Thurston. Originalmente, a conjectura de Gromov, Lawson e Thurston diz que um fibrado de discos sobre uma superfície conexa fechada orientável de gênero ≥ 2 admite métrica hiperbólica completa de curvatura constante se e só se ΙeΙ ≤ Ι XΙ, onde e é o número de Euler do fibrado e X é a caraterística de Euler da base. Posteriomente, observou-se que esta desigualdade também era válida em todos os fibrados de discos sobre superfícies com estrutura hiperbólica complexa (i.e., uniformizados pela 2-bola holomorfa) conhecidos. Por esta razão, passou-se a acreditar que a conjectura depende apenas de curvatura negativa lato sensu (digamos, à la Alexandrov) e não das especificidades de uma geometria hiperbólica particular. O bidisco hiperbólico é o caso mais simples que nos permite testar tal hipótese, pois está no limite de ser hiperbólico (a curvatura é ≤ 0). Construímos os dois casos extremais: = 0 (fibrado trivial) e ΙeΙ = ΙXΙ (fibrado tangente). Além disso, provamos alguns resultados relacionados à teoria de Teichmüller no contexto de fibrados de discos uniformizados pelo bidisco hiperbólico. / Generalizing the constructions in (ANANIN; GROSSI; GUSEVISKII, 2011) and in (GROSSI, 2015) to the hyperbolic bidisc, we show that the trivial (tangent) bundle over genus ≥ 1 (≥ 2) surfaces admits a geometric structure modelled on the hyperbolic bidisc. (The case of the trivial bundle over the torus is particularly interesting because the curvature vanishes on the base and on every fiber, but is non-null on the bundle.) Aside from their intrinsic value, these examples also play a role in the context of the Gromov, Lawson and Thurston conjecture (GLT conjecture). Originally, the GLT conjecture states that a disc bundle over a connected oriented closed surface of genus ≥ 2 admits a complete hyperbolic metric of constant curvature if and only if ΙeΙ ≤ ΙXΙ, where stands for the Euler number of the bundle and , for the Euler characteristic of the base. Afterwards, it was observed that this inequality also holds for every known example of disc bundles over surfaces equipped with complex hyperbolic structure (i.e., uniformized by the holomoprhic 2-ball). So, one started to believe that the conjecture depends only on negative curvature lato sensu (say, à la Alexandrov) and not on the particularities of an specific hyperbolic geometry. The hyperbolic bidisc is the simplest case allowing us to test such hypothesis since it lies on the frontier of being hyperbolic (curvature is ≥ 0). We construct the two extremal cases: e = 0 (trivial bundle) and ΙeΙ = ΙXΙ (tangent bundle). We also prove a few results related to Teichmüllers theory in the context of disc bundles uniformized by the hyperbolic bidisc.
|
2 |
Fibrados de discos sobre superfícies uniformizados pelo bidisco hiperbólico / Disc bundles over surfaces uniformized by the hyperbolic bidiscSidnei Furtado Costa 27 June 2017 (has links)
Generalizando para o caso do bidisco hiperbólico as construções em (ANANIN; GROSSI; GUSEVISKII, 2011) e em (GROSSI, 2015), provamos que o fibrado trivial (tangente) sobre superfícies de gênero ≥ 1 (≥ 2) admite geometria modelada no bidisco hiperbólico. (O caso do fibrado trivial sobre o toro é particularmente curioso, pois a curvatura é nula na base e em cada fibra, mas não no fibrado.) Além do seu próprio valor intrínseco, estes exemplos se inserem no contexto da conjectura de Gromov, Lawson e Thurston. Originalmente, a conjectura de Gromov, Lawson e Thurston diz que um fibrado de discos sobre uma superfície conexa fechada orientável de gênero ≥ 2 admite métrica hiperbólica completa de curvatura constante se e só se ΙeΙ ≤ Ι XΙ, onde e é o número de Euler do fibrado e X é a caraterística de Euler da base. Posteriomente, observou-se que esta desigualdade também era válida em todos os fibrados de discos sobre superfícies com estrutura hiperbólica complexa (i.e., uniformizados pela 2-bola holomorfa) conhecidos. Por esta razão, passou-se a acreditar que a conjectura depende apenas de curvatura negativa lato sensu (digamos, à la Alexandrov) e não das especificidades de uma geometria hiperbólica particular. O bidisco hiperbólico é o caso mais simples que nos permite testar tal hipótese, pois está no limite de ser hiperbólico (a curvatura é ≤ 0). Construímos os dois casos extremais: = 0 (fibrado trivial) e ΙeΙ = ΙXΙ (fibrado tangente). Além disso, provamos alguns resultados relacionados à teoria de Teichmüller no contexto de fibrados de discos uniformizados pelo bidisco hiperbólico. / Generalizing the constructions in (ANANIN; GROSSI; GUSEVISKII, 2011) and in (GROSSI, 2015) to the hyperbolic bidisc, we show that the trivial (tangent) bundle over genus ≥ 1 (≥ 2) surfaces admits a geometric structure modelled on the hyperbolic bidisc. (The case of the trivial bundle over the torus is particularly interesting because the curvature vanishes on the base and on every fiber, but is non-null on the bundle.) Aside from their intrinsic value, these examples also play a role in the context of the Gromov, Lawson and Thurston conjecture (GLT conjecture). Originally, the GLT conjecture states that a disc bundle over a connected oriented closed surface of genus ≥ 2 admits a complete hyperbolic metric of constant curvature if and only if ΙeΙ ≤ ΙXΙ, where stands for the Euler number of the bundle and , for the Euler characteristic of the base. Afterwards, it was observed that this inequality also holds for every known example of disc bundles over surfaces equipped with complex hyperbolic structure (i.e., uniformized by the holomoprhic 2-ball). So, one started to believe that the conjecture depends only on negative curvature lato sensu (say, à la Alexandrov) and not on the particularities of an specific hyperbolic geometry. The hyperbolic bidisc is the simplest case allowing us to test such hypothesis since it lies on the frontier of being hyperbolic (curvature is ≥ 0). We construct the two extremal cases: e = 0 (trivial bundle) and ΙeΙ = ΙXΙ (tangent bundle). We also prove a few results related to Teichmüllers theory in the context of disc bundles uniformized by the hyperbolic bidisc.
|
Page generated in 0.0814 seconds