Spelling suggestions: "subject:"poincaré embedding"" "subject:"poincarés embedding""
1 |
Plongement entre variétés lisses à homotopie rationnelle prèsBoilley, Christophe 08 December 2005 (has links)
Dans quelles conditions une application entre variétés différentiables est-elle homotope à un plongement lisse ? L'objet de la thèse est de
compléter les obstructions rationnelles déjà connues, de façon à réduire le problème initial de topologie différentiable à un problème de calcul
algébrique. Le théorème principal de la thèse permet de construire un plongement entre variétés lisses dans une classe d'homotopie rationnelle d'une application donnée, lorsque le problème algébrique a une solution. Plusieurs cas génériques de réalisabilité sont présentés, ainsi que des exemples mettant en évidence les nouvelles obstructions au plongement. Enfin, l'utilisation des techniques de chirurgie plongée dans le rang métastable aboutit à de nouveaux théorèmes de réalisation de plongements à cohomologie rationnelle près dans une variété fixée. / When does there exist a smooth embedding in a homotopy class of map between differentiable manifolds ? Rational homotopy theory provides computation machinery to such questions in differential topology. The purpose of this thesis is the completion of rational obstructions which prevent a map from being an embedding. More precisely, we show that a solution to the underlying algebraic problem gives rise to a smooth embedding with the same rational invariants. Several generic cases of realizability are detailed, as well as some examples which illustrate our new obstructions. We also use techniques of embedded surgery in metastable range, in order to state a theorem about realizability of an embedding up to rational cohomolgy into a fixed manifold.
|
Page generated in 0.0805 seconds