• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Návrh a implementace systému pro výměnu statistických informací o síťovém provozu mezi přístupové body WLAN sítě / Design and implementation of a system for exchange of statistic information on network traffic between access points of WLAN network

Lenk, Peter January 2012 (has links)
This thesis explores the possibilities of implementation of methods for data acquisition in wireless access point MikroTik while using virtualized OpenWRT system. First part of the paper contains short introduction into device’s features and extention of the features by virtualizing the operation system. Design and implementation of the scripts for average load of interfaces data acquisition is in the second part of the paper. The next part deals with the transmission of the gathered data and implementation of the proposed programs in C language. The last part of the paper covers the implementation of a complete program to collect, send and receive data with the option of parameters configuration, and automatic acquisition of the configuration.
2

A Local Expansion Approach for Continuous Nearest Neighbor Queries

Liu, Ta-Wei 16 June 2008 (has links)
Queries on spatial data commonly concern a certain range or area, for example, queries related to intersections, containment and nearest neighbors. The Continuous Nearest Neighbor (CNN) query is one kind of the nearest neighbor queries. For example, people may want to know where those gas stations are along the super highway from the starting position to the ending position. Due to that there is no total ordering of spatial proximity among spatial objects, the space filling curve (SFC) approach has proposed to preserve the spatial locality. Chen and Chang have proposed efficient algorithms based on SFC to answer nearest neighbor queries, so we may perform a sequence of individually nearest neighbor queries to answer such a CNN query in the centralized system by one of Chen and Chang's algorithms. However, each searched range of these nearest neighbor queries could be overlapped, and these queries may access several same pages on the disk, resulting in many redundant disk accesses. On the other hand, Zheng et al. have proposed an algorithm based on the Hilbert curve for the CNN query for the wireless broadcast environment, and it contains two phases. In the first phase, Zheng et al.'s algorithm designs a searched range to find candidate objects. In the second phase, it uses some heuristics to filter the candidate objects for the final answer. However, Zheng et al.'s algorithm may check some data blocks twice or some useless data blocks, resulting in some redundant disk accesses. Therefore, in this thesis, to avoid these disadvantages in the first phase of Zheng et al.'s algorithm, we propose a local expansion approach based on the Peano curve for the CNN query in the centralized system. In the first phase, we determine the searched range to obtain all candidate objects. Basically, we first calculate the route between the starting point and the ending point. Then, we move forward one block from the starting point to the ending point, and locally spread the searched range to find the candidate objects. In the second phase, we use heuristics mentioned in Zheng et al.'s algorithm to filter the candidate objects for the final answer. Based on such an approach, we proposed two algorithms: the forward moving (FM) algorithm and the forward moving* (FM*) algorithm. The FM algorithm assumes that each object is in the center of a block, and the FM* algorithm assumes that each object could be in any place of a block. Our local expansion approach can avoid the duplicated check in Zheng et al.'s algorithm, and determine a searched range with higher accuracy than that of Zhenget al.'s algorithm. From our simulation results, we show that the performance of the FM or FM* algorithm is better than that of Zheng et al.'s algorithm, in terms of the accuracy and the processing time.

Page generated in 0.0428 seconds