• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 8
  • 5
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 73
  • 73
  • 43
  • 16
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Gaussian processes for state space models and change point detection

Turner, Ryan Darby January 2012 (has links)
This thesis details several applications of Gaussian processes (GPs) for enhanced time series modeling. We first cover different approaches for using Gaussian processes in time series problems. These are extended to the state space approach to time series in two different problems. We also combine Gaussian processes and Bayesian online change point detection (BOCPD) to increase the generality of the Gaussian process time series methods. These methodologies are evaluated on predictive performance on six real world data sets, which include three environmental data sets, one financial, one biological, and one from industrial well drilling. Gaussian processes are capable of generalizing standard linear time series models. We cover two approaches: the Gaussian process time series model (GPTS) and the autoregressive Gaussian process (ARGP).We cover a variety of methods that greatly reduce the computational and memory complexity of Gaussian process approaches, which are generally cubic in computational complexity. Two different improvements to state space based approaches are covered. First, Gaussian process inference and learning (GPIL) generalizes linear dynamical systems (LDS), for which the Kalman filter is based, to general nonlinear systems for nonparametric system identification. Second, we address pathologies in the unscented Kalman filter (UKF).We use Gaussian process optimization (GPO) to learn UKF settings that minimize the potential for sigma point collapse. We show how to embed mentioned Gaussian process approaches to time series into a change point framework. Old data, from an old regime, that hinders predictive performance is automatically and elegantly phased out. The computational improvements for Gaussian process time series approaches are of even greater use in the change point framework. We also present a supervised framework learning a change point model when change point labels are available in training.
22

Statistical shape analysis of the proximal femur : development of a fully automatic segmentation system and its applications

Lindner, Claudia January 2014 (has links)
Osteoarthritis (OA) is the most common form of human joint disease causing significant pain and disability. Current treatment for hip OA is limited to pain management and joint replacement for end-stage disease. The development of methods for early diagnosis and new treatment options are urgently needed to minimise the impact of the disease. Studies of hip OA have shown that hip joint morphology correlates with susceptibility to hip OA and disease progression. Bone shape analyses play an important role in disease diagnosis, pre-operative planning, and treatment analysis as well as in epidemiological studies aimed at identifying risk factors for hip OA. Statistical Shape Models (SSMs) are being increasingly applied to imaging-based bone shape analyses as they provide a means of quantitatively describing the global shape of the bone. This is in contrast to conventional clinical and research practice where the analysis of bone shape is reduced to a series of measurements of lengths and angles. This thesis describes the development of a novel fully automatic software system that segments the proximal femur from anteroposterior (AP) pelvic radiographs by densely placing 65 points along its contour. These annotations can then be used for the detailed morphometric analysis of proximal femur shape. The performance of the system was evaluated on a large dataset of 839 radiographs of mixed quality. Achieving a mean point-to-curve error of less than 0.9mm for 99% of all 839 AP pelvic radiographs, this is the most accurate and robust automatic method for segmenting the proximal femur in two-dimensional radiographs yet published. The system was also applied to a number of morphometric analyses of the proximal femur, showing that SSM-based radiographic proximal femur shape significantly differs between males and females, and is highly symmetric between the left and right hip joint of an individual. In addition, the research described in this thesis demonstrates how the point annotations resulting from the system can be used for univariate and multivariate genetic association analyses, identifying three novel genetic variants that contribute to radiographic proximal femur shape while also showing an association with hip OA.The developed system will facilitate complex morphometric and genetic analyses of shape variation of the proximal femur across large datasets, paving the way for the development of new options to diagnose, treat and prevent hip OA.
23

Exploring Change Point Detection in Network Equipment Logs

Björk, Tim January 2021 (has links)
Change point detection (CPD) is the method of detecting sudden changes in timeseries, and its importance is great concerning network traffic. With increased knowledge of occurring changes in data logs due to updates in networking equipment,a deeper understanding is allowed for interactions between the updates and theoperational resource usage. In a data log that reflects the amount of network traffic, there are large variations in the time series because of reasons such as connectioncount or external changes to the system. To circumvent these unwanted variationchanges and assort the deliberate variation changes is a challenge. In this thesis, we utilize data logs retrieved from a network equipment vendor to detect changes, then compare the detected changes to when firmware/signature updates were applied, configuration changes were made, etc. with the goal to achieve a deeper understanding of any interaction between firmware/signature/configuration changes and operational resource usage. Challenges in the data quality and data processing are addressed through data manipulation to counteract anomalies and unwanted variation, as well as experimentation with parameters to achieve the most ideal settings. Results are produced through experiments to test the accuracy of the various change pointdetection methods, and for investigation of various parameter settings. Through trial and error, a satisfactory configuration is achieved and used in large scale log detection experiments. The results from the experiments conclude that additional information about how changes in variation arises is required to derive the desired understanding.
24

Metoda sledování příznaků pro registraci sekvence medicínských obrazů / Feature tracking method for medical images registration

Jakubík, Tomáš January 2012 (has links)
The aim of this thesis is to familiarize with the issue of registration of medical image sequences. The main objective was to focus on the method of feature tracking in the image and various options of its implementation. The theoretical part describes various methods for detection of feature points and future point matching methods. In the practical part these methods were implemented in Matlab programming environment and a simple graphical user interface was created.
25

Privacy of Sudden Events in Cyber-Physical Systems

Alisic, Rijad January 2021 (has links)
Cyberattacks against critical infrastructures has been a growing problem for the past couple of years. These infrastructures are a particularly desirable target for adversaries, due to their vital importance in society. For instance, a stop in the operation of a critical infrastructure could result in a crippling effect on a nation's economy, security or public health. The reason behind this increase is that critical infrastructures have become more complex, often being integrated with a large network of various cyber components. It is through these cyber components that an adversary is able to access the system and conduct their attacks. In this thesis, we consider methods which can be used as a first line of defence against such attacks for Cyber-Physical Systems (CPS). Specifically, we start by studying how information leaks about a system's dynamics helps an adversary to generate attacks that are difficult to detect. In many cases, such attacks can be detrimental to a CPS since they can drive the system to a breaking point without being detected by the operator that is tasked to secure the system. We show that an adversary can use small amounts of data procured from information leaks to generate these undetectable attacks. In particular, we provide the minimal amount of information that is needed in order to keep the attack hidden even if the operator tries to probe the system for attacks.  We design defence mechanisms against such information leaks using the Hammersley-Chapman-Robbins lower bound. With it, we study how information leakage could be mitigated through corruption of the data by injection of measurement noise. Specifically, we investigate how information about structured input sequences, which we call events, can be obtained through the output of a dynamical system and how this leakage depends on the system dynamics. For example, it is shown that a system with fast dynamical modes tends to disclose more information about an event compared to a system with slower modes. However, a slower system leaks information over a longer time horizon, which means that an adversary who starts to collect information long after the event has occured might still be able to estimate it. Additionally, we show how sensor placements can affect the information leak. These results are then used to aid the operator to detect privacy vulnerabilities in the design of a CPS. Based on the Hammersley-Chapman-Robbins lower bound, we provide additional defensive mechanisms that can be deployed by an operator online to minimize information leakage. For instance, we propose a method to modify the structured inputs in order to maximize the usage of the existing noise in the system. This mechanism allows us to explicitly deal with the privacy-utility trade-off, which is of interest when optimal control problems are considered. Finally, we show how the adversary's certainty of the event increases as a function of the number of samples they collect. For instance, we provide sufficient conditions for when their estimation variance starts to converge to its final value. This information can be used by an operator to estimate when possible attacks from an adversary could occur, and change the CPS before that, rendering the adversary's collected information useless. / De senaste åren har cyberanfall mot kritiska infrastructurer varit ett växande problem. Dessa infrastrukturer är särskilt utsatta för cyberanfall, eftersom de uppfyller en nödvändig function för att ett samhälle ska fungera. Detta gör dem till önskvärda mål för en anfallare. Om en kritisk infrastruktur stoppas från att uppfylla sin funktion, då kan det medföra förödande konsekvenser för exempelvis en nations ekonomi, säkerhet eller folkhälsa. Anledningen till att mängden av attacker har ökat beror på att kritiska infrastrukturer har blivit alltmer komplexa eftersom de numera ingår i stora nätverk dör olika typer av cyberkomponenter ingår. Det är just genom dessa cyberkomponenter som en anfallare kan få tillgång till systemet och iscensätta cyberanfall. I denna avhandling utvecklar vi metoder som kan användas som en första försvarslinje mot cyberanfall på cyberfysiska system (CPS). Vi med att undersöka hur informationsläckor om systemdynamiken kan hjälpa en anfallare att skapa svårupptäckta attacker. Oftast är sådana attacker förödande för CPS, eftersom en anfallare kan tvinga systemet till en bristningsgräns utan att bli upptäcka av operatör vars uppgift är att säkerställa systemets fortsatta funktion. Vi bevisar att en anfallare kan använda relativt små mängder av data för att generera dessa svårupptäckta attacker. Mer specifikt så härleder ett uttryck för den minsta mängd information som krävs för att ett anfall ska vara svårupptäckt, även för fall då en operatör tar till sig metoder för att undersöka om systemet är under attack. I avhandlingen konstruerar vi försvarsmetoder mot informationsläcker genom Hammersley-Chapman-Robbins olikhet. Med denna olikhet kan vi studera hur informationsläckan kan dämpas genom att injicera brus i datan. Specifikt så undersöker vi hur mycket information om strukturerade insignaler, vilket vi kallar för händelser, till ett dynamiskt system som en anfallare kan extrahera utifrån dess utsignaler. Dessutom kollar vi på hur denna informationsmängd beror på systemdynamiken. Exempelvis så visar vi att ett system med snabb dynamik läcker mer information jämfört med ett långsammare system. Däremot smetas informationen ut över ett längre tidsintervall för långsammare system, vilket leder till att anfallare som börjar tjuvlyssna på ett system långt efter att händelsen har skett kan fortfarande uppskatta den. Dessutom så visar vi jur sensorplaceringen i ett CPS påverkar infromationsläckan. Dessa reultat kan användas för att bistå en operatör att analysera sekretessen i ett CPS. Vi använder även Hammersley-Chapman-Robbins olikhet för att utveckla försvarslösningar mot informationsläckor som kan användas \textit{online}. Vi föreslår modifieringar till den strukturella insignalen så att systemets befintliga brus utnyttjas bättre för att gömma händelsen. Om operatören har andra mål den försöker uppfylla med styrningen så kan denna metod användas för att styra avvängingen mellan sekretess och operatorns andra mål. Slutligen så visar vi hur en anfallares uppskattning av händelsen förbättras som en funktion av mängden data får tag på. Operatorn kan använda informationen för att ta reda på när anfallaren kan tänka sig vara redo att anfalla systemet, och därefter ändra systemet innan detta sker, vilket gör att anfallarens information inte längre är användbar. / <p>QC 20210820</p>
26

Nonparametric Bayesian Clustering under Structural Restrictions

Hanxi Sun (11009154) 23 July 2021 (has links)
<div>Model-based clustering, with its flexibility and solid statistical foundations, is an important tool for unsupervised learning, and has numerous applications in a variety of fields. This dissertation focuses on nonparametric Bayesian approaches to model-based clustering under structural restrictions. These are additional constraints on the model that embody prior knowledge, either to regularize the model structure to encourage interpretability and parsimony or to encourage statistical sharing through underlying tree or network structure.</div><div><br></div><div>The first part in the dissertation focuses on the most commonly used model-based clustering models, mixture models. Current approaches typically model the parameters of the mixture components as independent variables, which can lead to overfitting that produces poorly separated clusters, and can also be sensitive to model misspecification. To address this problem, we propose a novel Bayesian mixture model with the structural restriction being that the clusters repel each other.The repulsion is induced by the generalized Matérn type-III repulsive point process. We derive an efficient Markov chain Monte Carlo (MCMC) algorithm for posterior inference, and demonstrate its utility on a number of synthetic and real-world problems. <br></div><div><br></div><div>The second part of the dissertation focuses on clustering populations with a hierarchical dependency structure that can be described by a tree. A classic example of such problems, which is also the focus of our work, is the phylogenetic tree with nodes often representing biological species. The structure of this problem refers to the hierarchical structure of the populations. Clustering of the populations in this problem is equivalent to identify branches in the tree where the populations at the parent and child node have significantly different distributions. We construct a nonparametric Bayesian model based on hierarchical Pitman-Yor and Poisson processes to exploit this, and develop an efficient particle MCMC algorithm to address this problem. We illustrate the efficacy of our proposed approach on both synthetic and real-world problems.</div>
27

Automatic Camera Calibration Techniques for Collaborative Vehicular Applications

Tummala, Gopi Krishna 19 June 2019 (has links)
No description available.
28

Vision-Assisted Control of a Hovering Air Vehicle in an Indoor Setting

Johnson, Neil G. 22 June 2008 (has links) (PDF)
The quadrotor helicopter is a unique flying vehicle which uses the thrust from four motors to provide hover flight capability. The uncoupled nature of the longitudinal and lateral axes and its ability to support large payloads with respect to its size make it an attractive vehicle for autonomous vehicle research. In this thesis, the quadrotor is modeled based on first principles and a proportional-derivative control method is applied for attitude stabilization and position control. A unique means of using an optic flow sensor for velocity and position estimation in an indoor setting is presented with flight results. Reliable hover flight and hallway following capabilities are exhibited in GPS-denied indoor flight using only onboard sensors. Attitude angles can be reliably estimated in the short run by integrating the angular rates from MEMS gyros, but noise on the signal leads to drift which renders the measurement unsuitable to attitude estimation. Typical methods of providing vector attitude corrections such as accelerometers and magnetometers have inherent weaknesses on hovering vehicles. Thus, an additional vector measurement is necessary to correct attitude readings for long-term flights. Two methods of using image processing to determine vanishing points in a hallway are demonstrated. The more promising of the two uses a Hough transform to detect lines in the image and forms a histogram of the intersections to detect likely vanishing point candidates. Once the vanishing point is detected, it acts as a vector measurement to correct attitude estimates on the quadrotor vehicle. Results using onboard vision to estimate heading are demonstrated on a test stand. Together, these capabilities improve the utility of the quadrotor platform for flight without the need of any external sensing capability.
29

A Design of Speaker Dependent Mandarin Recognition System

Pan, Ruei-tsz 02 September 2005 (has links)
A Mandarin phrase recognition system based on MFCC, LPC scaled excitation, vowel model, hidden Markov model (HMM) and Viterbi algorithm is proposed in this thesis. HMM, which is broadly used in speech recognition at present, is adopted in the main structure of recognition. In order to speed up the recognition time, we take advantage of stability of vowels in Mandarin and incorporate with vowel class recognition in our system. For the speaker-dependent case, a single Mandarin phrase recognition can be accomplished within 1 seconds on average in the laboratory environment.
30

Automatic Eye Tracking And Intermediate View Reconstruction For 3d Imaging Systems

Bediz, Yusuf 01 September 2006 (has links) (PDF)
In recent years, the utilization of 3D display systems became popular in many application areas. One of the most important issues in the utilization of these systems is to render the correct view to the observer based on his/her position. In this thesis, we propose and implement a single user view rendering system for autostereoscopic/stereoscopic displays. The system can easily be installed on a standard PC together with an autostereoscopic display or stereoscopic glasses (shutter, polarized, pulfrich, and anaglyph) with appropriate video card. Proposed system composes of three main blocks: view point detection, view point tracking and intermediate view reconstruction. Haar object detection method, which is based on boosted cascade of simple feature classifiers, is utilized as the view point detection method. After detection, feature points are found on the detected region and accordingly they are fed to the feature tracker. View point of the observer is calculated by using the tracked position of the observer on the image. Correct stereoscopic view is, then, rendered on the display. A 3D warping-based method is utilized in the system as the intermediate view reconstruction method. System is implemented on a computer with Pentium IV 3.0 GHz processor using E-D 3D shutter glasses and Creative NX Webcam.

Page generated in 0.1057 seconds