• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integrated nanoscaled detectors of biochemical species

Schütt, Julian 02 October 2020 (has links)
Rapid and reliable diagnostics of a disease represents one of the main focuses of today’s academic and industrial research in the development of new sensor prototypes and improvement of existing technologies. With respect to demographic changes and inhomogeneous distribution of the clinical facilities worldwide, especially in rural regions, a new generation of miniaturized biosensors is highly demanded offering an easy deliverability, low costs and sample preparation and simple usage. This work focuses on the integration of nanosized electronic structures for high-specific sensing applications into adequate microfluidic structures for sample delivery and liquid manipulation. Based on the conjunction of these two technologies, two novel sensor platforms were prototyped, both allowing label-free and optics-less electrochemical detection ranging from molecular species to eukaryotic micron-sized human cells.:Table of Figures List of Tables Abbreviations List of Symbols 1 Introduction 1.1 Motivation 1.2 State of the art 1.3 Scope of this thesis 2 Fundamentals 2.1 Sensors at the nanoscale 2.2 Transistors technology 2.2.1 p-n junction 2.2.3 The MOSFET 2.2.4 The ISFET and BioFET 2.3 Impedance measurements for biodetection 2.3.1 Electrical impedance spectroscopy 2.3.2 Electrical impedance cytometry 2.4 Microfluidics 2.4.1 Definition 2.4.2 Droplet-based microfluidics 2.5 Biomarkers for sensing applications 2.5.1 Peripheral blood mononuclear cells (PBMCs) 2.5.2 Physical parameters 3. Material and methods 3.1 General 3.1.1 Materials and chemicals 3.1.2 Surface cleaning 3.2 Lithography 3.2.1 Electron beam lithography 3.2.2 Laser lithography 3.2.3 UV lithography 3.2.4 Soft lithography 3.3 Thermal deposition of metals 3.4 APTES functionalization 3.4.1 Fluorescent labeling of APTES 3.5 Measurement devices 3.5.1 SiNW FET measurements 3.5.2 Electrical Impedance cytometry measurements 3.6 Bacteria and cell cultivation 3.6.1 PBMC purification and treatment 3.6.2 Bacteria cultivation 4. Compact nanosensors probe microdroplets 4.1 Overview 4.2 Fabrication 4.2.1 SiNW FET fabrication 4.2.2 SiNW FET modification for top-gate sensing 4.3 Electrical characterization 4.4 Flow-focusing droplet generation 4.4.1 Flow-focusing geometry 4.4.2 Flow-focusing droplet characterization 4.4.3 Microfluidic integration 4.5 Deionized water droplet sensing 4.6 Phosphate-buffered saline (PBS) droplet sensing 4.6.1 Influence of the droplet’s ionic concentration 4.6.2 Plateau formation in dependence of the droplet’s settling time 4.6.3 Droplet analysis by their ratio 4.6.4 Dependence on pH value 4.6.5 Long time pH sensing experiment 4.6.6 Dependence on ionic concentration 4.7 Tracking of reaction kinetics in droplets 4.7.1 Principle and setup of the glucose oxidase (GOx) enzymatic test 4.7.2 GOx enzymatic assay 4.8 Stable baseline by conductive carrier phase 5. Impedance-based flow cytometer on a chip 5.1 Overview 5.2 Overview of the fabrication of the sensor device 5.3 COMSOL simulation of sensing area 5.3.1 Prototyping of the sensing geometry 5.3.2 Optimization of the sensing geometry 5.3.3 Evaluation of the working potential 5.3.4. Scaling of the sensing area 5.4 Fabrication of the nanoelectronic sensing structure 5.4.1 Nanofabrication and analysis 5.4.2 Evaluation of the proximity effect 5.5 Microcontacting of nanostructured sensing structures 5.6 Electrical characterization of the sensing structure 5.6.1 Characterization in alternating current 5.6.2 Characterization in direct current (DC) 5.7 Scaling effect of nanostructures in static sensing conditions 5.8 Multi-analyte detection on the sensor 5.9 Microfluidic focusing system 5.9.1 1D focusing using FITC-probed deionized water 5.9.2 2D Focusing using fluorescent microparticles 5.10 Microfluidic integration of the two technologies 5.11 Dynamic SiO2 particle detection 5.11.1 Single particle detection 5.11.2 Scatter plot representation 5.11.3 Effect of the sensing area in dynamic particle detection 5.11.4 Dynamic detection of SiO2 particles with different diameters 5.12 Detection of peripheral blood mononuclear cells (PBMCs) 5.12.1 Overview 5.12.2 PBMC classification detected by impedance cytometry 5.12.3 PBMC Long-time detection 5.13 Detection of acute myeloid leukemia by impedance cytometry 5.13.1 Manual analysis of the output response 5.13.2 Learning algorithm for automatic cell classification 5.14 Exploring the detection limit of the device 6. Summary and outlook Scientific output References Acknowledgements / Rasche und zuverlässige biologische Krankheitsdiagnostik repräsentiert eines der Hauptfokusse heutiger akademischer und industrieller Forschung in der Entwicklung neuer Sensor-Prototypen und Verbesserung existierender Technologien. In bezug auf weltweite demographische Änderungen und hohe Distanzen zu Kliniken, besonders in ländlichen Gegenden, werden zusätzliche Anfordungen an neue miniaturisierte Biosensor-Generationen gestellt, wie zum Beispiel ihre Transportfähigkeit, geringe Kosten und Probenpräparation, sowie einfache Handhabung. Diese Dissertation beschäftigt sich mit der Integration nanoskalierter Strukturen zur Detektion chemischer und biologischer Spezies und mikrofluidischen Kanälen zu deren Transport und zur Manipulation der Ströme. Basierend auf der Verbindung dieser beiden Technologien wurden zwei Sensor-Plattformen entwickelt, die eine markierungsfreie und nicht-optische elektrische Detektion von Molekülen bis zu eukaryotischen menschlichen Zellen erlauben.:Table of Figures List of Tables Abbreviations List of Symbols 1 Introduction 1.1 Motivation 1.2 State of the art 1.3 Scope of this thesis 2 Fundamentals 2.1 Sensors at the nanoscale 2.2 Transistors technology 2.2.1 p-n junction 2.2.3 The MOSFET 2.2.4 The ISFET and BioFET 2.3 Impedance measurements for biodetection 2.3.1 Electrical impedance spectroscopy 2.3.2 Electrical impedance cytometry 2.4 Microfluidics 2.4.1 Definition 2.4.2 Droplet-based microfluidics 2.5 Biomarkers for sensing applications 2.5.1 Peripheral blood mononuclear cells (PBMCs) 2.5.2 Physical parameters 3. Material and methods 3.1 General 3.1.1 Materials and chemicals 3.1.2 Surface cleaning 3.2 Lithography 3.2.1 Electron beam lithography 3.2.2 Laser lithography 3.2.3 UV lithography 3.2.4 Soft lithography 3.3 Thermal deposition of metals 3.4 APTES functionalization 3.4.1 Fluorescent labeling of APTES 3.5 Measurement devices 3.5.1 SiNW FET measurements 3.5.2 Electrical Impedance cytometry measurements 3.6 Bacteria and cell cultivation 3.6.1 PBMC purification and treatment 3.6.2 Bacteria cultivation 4. Compact nanosensors probe microdroplets 4.1 Overview 4.2 Fabrication 4.2.1 SiNW FET fabrication 4.2.2 SiNW FET modification for top-gate sensing 4.3 Electrical characterization 4.4 Flow-focusing droplet generation 4.4.1 Flow-focusing geometry 4.4.2 Flow-focusing droplet characterization 4.4.3 Microfluidic integration 4.5 Deionized water droplet sensing 4.6 Phosphate-buffered saline (PBS) droplet sensing 4.6.1 Influence of the droplet’s ionic concentration 4.6.2 Plateau formation in dependence of the droplet’s settling time 4.6.3 Droplet analysis by their ratio 4.6.4 Dependence on pH value 4.6.5 Long time pH sensing experiment 4.6.6 Dependence on ionic concentration 4.7 Tracking of reaction kinetics in droplets 4.7.1 Principle and setup of the glucose oxidase (GOx) enzymatic test 4.7.2 GOx enzymatic assay 4.8 Stable baseline by conductive carrier phase 5. Impedance-based flow cytometer on a chip 5.1 Overview 5.2 Overview of the fabrication of the sensor device 5.3 COMSOL simulation of sensing area 5.3.1 Prototyping of the sensing geometry 5.3.2 Optimization of the sensing geometry 5.3.3 Evaluation of the working potential 5.3.4. Scaling of the sensing area 5.4 Fabrication of the nanoelectronic sensing structure 5.4.1 Nanofabrication and analysis 5.4.2 Evaluation of the proximity effect 5.5 Microcontacting of nanostructured sensing structures 5.6 Electrical characterization of the sensing structure 5.6.1 Characterization in alternating current 5.6.2 Characterization in direct current (DC) 5.7 Scaling effect of nanostructures in static sensing conditions 5.8 Multi-analyte detection on the sensor 5.9 Microfluidic focusing system 5.9.1 1D focusing using FITC-probed deionized water 5.9.2 2D Focusing using fluorescent microparticles 5.10 Microfluidic integration of the two technologies 5.11 Dynamic SiO2 particle detection 5.11.1 Single particle detection 5.11.2 Scatter plot representation 5.11.3 Effect of the sensing area in dynamic particle detection 5.11.4 Dynamic detection of SiO2 particles with different diameters 5.12 Detection of peripheral blood mononuclear cells (PBMCs) 5.12.1 Overview 5.12.2 PBMC classification detected by impedance cytometry 5.12.3 PBMC Long-time detection 5.13 Detection of acute myeloid leukemia by impedance cytometry 5.13.1 Manual analysis of the output response 5.13.2 Learning algorithm for automatic cell classification 5.14 Exploring the detection limit of the device 6. Summary and outlook Scientific output References Acknowledgements
2

Cellulose nanofibril-based Layer-by-Layer system for immuno-capture of circulating tumor cells in microfluidic devices

Lahchaichi, Ekeram January 2021 (has links)
År 2020 listade Världshälsoorganisationen (WHO) cancer som den globalt ledande dödsorsaken med över 10 miljoner dödsfall årligen. Av dessa 10 miljoner fall förekommer nästan 70% i låg- till medelinkomstländer - en siffra som på grund av den låga prioriteringen av cancerbehandling- och diagnostik förväntas öka till 85% redan år 2030. Att utveckla enkla, specifika och prisvärda verktyg för diagnostik kommer därför att bli avgörande för förebyggandet av cancer på en global nivå. För att komma ett steg närmare denna utveckling optimerades och testades i denna studie ett mikrofluidiskt system, utvecklat genom layer-bylayer- metoden, baserat på cellulosa nanofibriller med förmågan att isolera och fånga cirkulerande tumörceller. För att uppnå en termodynamisk jämvikt optimerades systemets hydrodynamiska parametrar optimerades för att uppnå en homogen fördelning med hög densitet av det cellulosa-baserade systemet i det mikrofluidiska chippet. Då jämvikt är grundläggande för att maximera det efterföljande beläggningen av antikroppar, och därmed hur effektivt celler isoleras, modifierades parametrar såsom koncentration, flödeshastighet, inkubationstid med fler tills att önskad effekt uppnåtts. Således koncepttestades systemet genom att fånga celler spetsade i blod och därmed demonstrera att systemet kan användas i syfte att isolera cancerceller från blodprov. Detta öppnar upp för utveckling av liknande diagnostiska verktyg som kan användas för att isolera lågfrekventa celler direkt från blod. / In 2020, the World Health Organization (WHO) listed cancer as the leading cause of death worldwide, reaching a staggering number of 10 million cancer-related deaths annually. Of these 10 million deaths, nearly 70% occurred in low- and middle-income countries; a number that is expected to increase to 85% by 2030 due to the lack of resources as well as low priority of the development of cancer treatment and diagnosis. Hence, the development of a sophisticated, specific and affordable diagnostic tool will be crucial for global cancer prevention and control. In this study, a cellulose nanofibril-based Layer-by-Layer system for immuno-capture of tumour cells in a microfluidic device was optimized and tested for the development of a simple and cost-effective diagnostic tool for use in resource-limited areas. In the pursuit of a thermodynamic equilibrium, the hydrodynamic parameters of the system were optimized to achieve a homogeneous distribution with a high surface density of the cellulose-based system across the microfluidic channels. Since an equilibrated system is essential to maximize the antibody coating, and thereby cell capture efficiency, parameters including but not limited to concentration, flow rate and incubation time were altered until a desired effect had been achieved. Thus, as proof-of-concept, the system was tested by capturing cancer cells spiked into whole blood, thereby demonstrating that the system can be utilized for the purpose of isolating cancer cells from blood samples. This paves the way for the development of similar clinical diagnostic tools for the isolation of rare cells directly from whole blood.

Page generated in 0.043 seconds