Spelling suggestions: "subject:"4points cycliques"" "subject:"5points cycliques""
1 |
Méthodes de reconstruction tridimensionnelle intégrant des points cycliques : application au suivi d'une caméraCalvet, Lilian 23 January 2014 (has links) (PDF)
Cette thèse traite de la reconstruction tridimensionnelle d'une scène rigide à partir d'une collection de photographies numériques, dites vues. Le problème traité est connu sous le nom du "calcul de la structure et du mouvement" (structure-and/from-motion) qui consiste à "expliquer" des trajectoires de points dits d'intérêt au sein de la collection de vues par un certain mouvement de l'appareil (dont sa trajectoire) et des caractéristiques géométriques tridimensionnelles de la scène. Dans ce travail, nous proposons les fondements théoriques pour étendre certaines méthodes de calcul de la structure et du mouvement afin d'intégrer comme données d'entrée, des points d'intérêt réels et des points d'intérêt complexes, et plus précisément des images de points cycliques. Pour tout plan projectif, les points cycliques forment une paire de points complexes conjugués qui, par leur invariance par les similitudes planes, munissent le plan projectif d'une structure euclidienne. Nous introduisons la notion de marqueurs cycliques qui sont des marqueurs plans permettant de calculer sans ambiguïté les images des points cycliques de leur plan de support dans toute vue. Une propriété de ces marqueurs, en plus d'être très "riches" en information euclidienne, est que leurs images peuvent être appariées même si les marqueurs sont disposés arbitrairement sur des plans parallèles, grâce à l'invariance des points cycliques. Nous montrons comment utiliser cette propriété dans le calcul projectif de la structure et du mouvement via une technique matricielle de réduction de rang, dite de factorisation, de la matrice des données correspondant aux images de points réels, complexes et/ou cycliques. Un sous-problème critique abordé dans le calcul de la structure et du mouvement est celui de l'auto-calibrage de l'appareil, problème consistant à transformer un calcul projectif en un calcul euclidien. Nous expliquons comment utiliser l'information euclidienne fournie par les images des points cycliques dans l'algorithme d'auto-calibrage opérant dans l'espace projectif dual et fondé sur des équations linéaires. L'ensemble de ces contributions est finalement utilisé pour une application de suivi automatique de caméra utilisant des marqueurs formés par des couronnes concentriques (appelés CCTags), où il s'agit de calculer le mouvement tridimensionnel de la caméra dans la scène à partir d'une séquence vidéo. Ce type d'application est généralement utilisé dans l'industrie du cinéma ou de la télévision afin de produire des effets spéciaux. Le suivi de caméra proposé dans ce travail a été conçu pour proposer le meilleur compromis possible entre flexibilité d'utilisation et précision des résultats obtenus.
|
2 |
Méthodes de reconstruction tridimensionnelle intégrant des points cycliques : application au suivi d’une caméra / Structure-from-Motion paradigms integrating circular points : application to camera trackingCalvet, Lilian 23 January 2014 (has links)
Cette thèse traite de la reconstruction tridimensionnelle d’une scène rigide à partir d’une collection de photographies numériques, dites vues. Le problème traité est connu sous le nom du "calcul de la structure et du mouvement" (structure-and/from-motion) qui consiste à "expliquer" des trajectoires de points dits d’intérêt au sein de la collection de vues par un certain mouvement de l’appareil (dont sa trajectoire) et des caractéristiques géométriques tridimensionnelles de la scène. Dans ce travail, nous proposons les fondements théoriques pour étendre certaines méthodes de calcul de la structure et du mouvement afin d’intégrer comme données d’entrée, des points d’intérêt réels et des points d’intérêt complexes, et plus précisément des images de points cycliques. Pour tout plan projectif, les points cycliques forment une paire de points complexes conjugués qui, par leur invariance par les similitudes planes, munissent le plan projectif d’une structure euclidienne. Nous introduisons la notion de marqueurs cycliques qui sont des marqueurs plans permettant de calculer sans ambiguïté les images des points cycliques de leur plan de support dans toute vue. Une propriété de ces marqueurs, en plus d’être très "riches" en information euclidienne, est que leurs images peuvent être appariées même si les marqueurs sont disposés arbitrairement sur des plans parallèles, grâce à l’invariance des points cycliques. Nous montrons comment utiliser cette propriété dans le calcul projectif de la structure et du mouvement via une technique matricielle de réduction de rang, dite de factorisation, de la matrice des données correspondant aux images de points réels, complexes et/ou cycliques. Un sous-problème critique abordé dans le calcul de la structure et du mouvement est celui de l’auto-calibrage de l’appareil, problème consistant à transformer un calcul projectif en un calcul euclidien. Nous expliquons comment utiliser l’information euclidienne fournie par les images des points cycliques dans l’algorithme d’auto-calibrage opérant dans l’espace projectif dual et fondé sur des équations linéaires. L’ensemble de ces contributions est finalement utilisé pour une application de suivi automatique de caméra utilisant des marqueurs formés par des couronnes concentriques (appelés CCTags), où il s’agit de calculer le mouvement tridimensionnel de la caméra dans la scène à partir d’une séquence vidéo. Ce type d’application est généralement utilisé dans l’industrie du cinéma ou de la télévision afin de produire des effets spéciaux. Le suivi de caméra proposé dans ce travail a été conçu pour proposer le meilleur compromis possible entre flexibilité d’utilisation et précision des résultats obtenus. / The thesis deals with the problem of 3D reconstruction of a rigid scene from a collection of views acquired by a digital camera. The problem addressed, referred as the Structure-from-Motion (SfM) problem, consists in computing the camera motion (including its trajectory) and the 3D characteristics of the scene based on 2D trajectories of imaged features through the collection. We propose theoretical foundations to extend some SfM paradigms in order to integrate real as well as complex imaged features as input data, and more especially imaged circular points. Circular points of a projective plane consist in a complex conjugate point-pair which is fixed under plane similarity ; thus endowing the plane with an Euclidean structure. We introduce the notion of circular markers which are planar markers that allows to compute, without any ambiguity, imaged circular points of their supporting plane in all views. Aside from providing a very “rich” Euclidean information, such features can be matched even if they are arbitrarily positioned on parallel planes thanks to their invariance under plane similarity ; thus increasing their visibility compared to natural features. We show how to benefit from this geometric property in solving the projective SfM problem via a rank-reduction technique, referred to as projective factorization, of the matrix whose entries are images of real, complex and/or circular features. One of the critical issues in such a SfM paradigm is the self-calibration problem, which consists in updating a projective reconstruction into an euclidean one. We explain how to use the euclidean information provided by imaged circular points in the self-calibration algorithm operating in the dual projective space and relying on linear equations. All these contributions are finally used in an automatic camera tracking application relying on markers made up of concentric circles (called C2Tags). The problem consists in computing the 3D camera motion based on a video sequence. This kind of application is generally used in the cinema or TV industry to create special effects. The camera tracking proposed in this work in designed in order to provide the best compromise between flexibility of use and accuracy.
|
Page generated in 0.0427 seconds