Spelling suggestions: "subject:"poisson approximation"" "subject:"poisson eapproximation""
1 |
Discrete Small Sample AsymptoticsKathman, Steven Jay Jr. 05 January 2000 (has links)
Random variables defined on the natural numbers may often be approximated by Poisson variables. Just as normal approximations may be improved by saddlepoint methods, Poisson approximations may be substantially improved by tilting, expansion, and other related methods. This work will develop and examine the use of these methods, as well as present examples where such methods may be needed. / Ph. D.
|
2 |
Variations on the Matching ProblemJudkovich, David 23 May 2019 (has links)
No description available.
|
3 |
Uma metodologia semi-parametrica para IBNR (Incurred But Not Reported) / A semi-parametric methodology to IBNR (Incurred But Not Reported)Nascimento, Fernando Ferraz do 17 March 2006 (has links)
Orientadores: Ronaldo Dias, Nancy Lopes Garcia / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-06T03:32:13Z (GMT). No. of bitstreams: 1
Nascimento_FernandoFerrazdo_M.pdf: 973412 bytes, checksum: 97b1cf4137bd59eb99ae987305700439 (MD5)
Previous issue date: 2006 / Resumo: Neste trabalho, comparamos diversas técnicas de previsão de IBNR (Incurred But Not Reported) para dados de um triângulo Run-OjJ, desde as mais simples, como por exemplo as técnicas Chain- Ladder e a técnica da Separação, até as técnicas mais sofisticadas, considerando modelos Log-Normais ou pela distribuição Poisson Composta. Além disso, nosso trabalho enfatiza a necessidade do uso de técnicas não-paramétricas, considerando um modelo de truncamento das variáveis. Foi possível mostrar que, mesmo não tendo nenhuma informação sobre a distribuição dos dados, é possível estimar o IBNR com menor erro e variabilidade do que as técnicas usuais conhecidas. Para fazer as comparações, foram realizadas simulações de sinistros ocorrendo através de um Processo de Poisson não homogêneo, e com dependência no tempo de relato e valor do sinistro. A medida de comparação utilizada foi o Erro Quadrático Médio (EQM) entre os valores simulados e os valores previstos por cada técnica. A abordagem paramétrica, quando os dados provém de uma distribuição Poisson Composta, apresentou o menor EQM dentre todas as técnicas. Entretanto, se não há informação sobre a distribuição dos dados, a técnica de Mista de truncamento foi a melhor entre as não-paramétricas / Abstract: We compare several forecast techniques for IBNR(Incurred But Not Reported) from a Run-Off triangle data, since the most simple techniques like Chain-Ladder and Separation Technique, to the more complex using Log-Normal models and Compound Poisson distribution. Therefore, exist the necessity of the use of Nonparametric techniques, using a model that consider variable Truncation. It was possible shown that, when we don't have any information about the data, it's possible estimate de IBNR forecasting with less mistake and variability than the usual techniques. For make the forecasting, we used claims simulations occurring by a nonhomogeneous Poisson process and with dependence entry the time to report and value paid for one claim. The measure of comparison used was the Mean Square Error (MSE) of simulated values and forecasting values for each technique. The parametric boarding when the data come from a Compound Poisson distribution, was the best MSE entry all techniques. However, when we don't have any information about the data, the Truncation Technique was the best of the nonparametric techniques / Mestrado / Mestre em Estatística
|
4 |
A Limit Theorem in Cryptography.Lynch, Kevin 16 August 2005 (has links) (PDF)
Cryptography is the study of encryptying and decrypting messages and deciphering encrypted messages when the code is unknown. We consider Λπ(Δx, Δy) which is a count of how many ways a permutation satisfies a certain property. According to Hawkes and O'Connor, the distribution of Λπ(Δx, Δy) tends to a Poisson distribution with parameter ½ as m → ∞ for all Δx,Δy ∈ (Z/qZ)m - 0. We give a proof of this theorem using the Stein-Chen method: As qm approaches infinity, the distribution of Λπ(Δx, Δy) is approximately Poisson with parameter ½. Error bounds for this approximation are provided.
|
Page generated in 0.1109 seconds