Spelling suggestions: "subject:"poisson boundary"" "subject:"boisson boundary""
1 |
Boundary and Entropy of Space Homogeneous Markov ChainsVadim A. Kaimanovich, Wolfgang Woess, woess@TUGraz.at 07 March 2001 (has links)
No description available.
|
2 |
Boundaries and Harmonic Functions for Random Walks with Random Transition Probabilitieskaimanov@univ-rennes1.fr 17 October 2001 (has links)
No description available.
|
3 |
Transformed Random WalksForghani, Behrang January 2015 (has links)
We consider transformations of a given random walk on a countable group determined by Markov stopping times. We prove that these transformations preserve the Poisson boundary. Moreover, under some mild conditions, the asymptotic entropy (resp., rate of escape) of the transformed random walks is equal to the asymptotic entropy (resp., rate of escape) of the original random walk multiplied by the expectation of the corresponding stopping time. This is an analogue of the well-known Abramov's formula from ergodic theory.
|
4 |
Sur certains aspects de la propriété RD pour des représentations sur les bords de Poisson-Furstenberg / On some aspects of property RD for Poisson-Furstenberg boundary representations.Boyer, Adrien 03 July 2014 (has links)
Nous étudions la propriété RD en terme de décroissance de coefficients matriciels de représentations unitaires. Nous nous concentrons en particulier sur des représentations provenant de l'action des groupes de Lie et de groupes discrets sur un "bord" approprié. Ces actions produisent des rerésentations unitaires à normalisation prés. Nous utilisons des techniques d'analyse harmonique et de théorie ergodique pour amorcer une nouvelle approche de la conjecture de Valette. / We study property RD in terms of decay of matrix coefficients for unitary representations. We focus our attention on unitary representations arising from action of Lie groups and discrete groups of isometries of a CAT(-1) space on their appropriate boundary. We use some techniques of harmonic analysis, and ergodic theory to start a new approach of Valette's conjecture
|
Page generated in 0.051 seconds