• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A model of Sturm-Liouville operators defined on graphs and the associated Ambarzumyan problem

Hung, Yi-Chieh 30 January 2008 (has links)
In this thesis, we study the Pokornyi's model of a Sturm-Liouville operator defined on graphs. The model, proposed by Pokornyi and Pryadiev in 2004, is derived from the consideration of minimal energy of a system of interlocking springs oscillating in a medium with resistance. Here the system of springs is defined as a graph $Gamma$ with edges $R(Gamma)={gamma_i:i=1,dots,n}$ and set of internal vertices $J(Gamma)$. Let $partialGamma$ denote the set of boundary vertices of $Gamma$. For each vertex ${f v}in J(Gamma)$, we let $Gamma({f v})={gamma_iin R(Gamma):~{f v}$ is an endpoint of $ gamma_i}$. The related eigenvalue problem of the model is as follows: egin{eqnarray*} -(p_iy_i')'+q_iy_i&=&lambda y_i,~~~~~qquad mbox{on}~gamma_i, y_i({f v})&=&y_j({f v}),~~~~~~~~forall {f v}in J(Gamma)~ mbox{and}~gamma_i,gamma_jin Gamma({f v}), sum_{gamma_iin Gamma({f v})}p_i({f v})frac{dy({f v})}{dgamma_i}+q({f v})y({f v})&=&lambda y({f v}),qquad ~~forall {f v}in J(Gamma), end{eqnarray*} equipped with Neumann or Dirichlet boundary conditions. This model is also a special case of some quantum graphs defined by Kuchment . par We shall derive the model and discuss the spectral properties. We shall also solve several Ambarzumyan problems on the model. In particular, we show that for a $n$-star shaped graph of uniform length $a$ with $p_iequiv1$, if ${frac{(m+frac{1}{2})^2)pi^2}{a^2}:min Ncup{0}}$ are Neumann eigenvalues, $0$ is the least Neumann eigenvalue, and $q_i({f v})=0$ for ${f v}in J(Gamma)$, then $q=0$ on $Gamma$.

Page generated in 0.0457 seconds