Spelling suggestions: "subject:"lol theta"" "subject:"lol pheta""
1 |
BIOCHEMICAL STUDIES OF DNA POLYMERASE THETAOzdemir, Ahmet Yunus January 2019 (has links)
POLQ is a unique multifunctional replication and repair gene that encodes a multidomain protein with a N-terminal superfamily 2 helicase and a C-terminal A-family polymerase. Although the function of the polymerase domain has been investigated, little is understood regarding the helicase domain. Multiple studies have reported that polymerase θ-helicase (Polθ-helicase) is unable to unwind DNA. However, it exhibits ATPase activity that is stimulated by single-stranded DNA, which presents a biochemical conundrum. In contrast to previous reports, we demonstrate that Polθ-helicase (residues 1– 894) efficiently unwinds DNA with 3'–5' polarity, including DNA with 3' or 5' overhangs, blunt- ended DNA, and replication forks. Polθ-helicase also efficiently unwinds RNA-DNA hybrids and exhibits a preference for unwinding the lagging strand at replication forks, similar to related HELQ helicase. Finally, we find that Polθ-helicase can facilitate strand displacement synthesis by Polθ-polymerase, suggesting a plausible function for the helicase domain. Taken together, these findings indicate nucleic acid unwinding as a relevant activity for Pol theta in replication repair. DNA polymerase theta is a unique polymerase-helicase fusion protein that promotes microhomology-mediated end-joining of DNA double-strand breaks. How full-length human DNA polymerase theta performs microhomology-mediated end-joining and is regulated by the helicase and disordered central domain remains unknown. We find that the helicase upregulates DNA polymerase theta microhomology-mediated end-joining activity in an ATPase-independent manner. Using single-particle microscopy, we find that DNA polymerase theta forms large multimeric complexes that promote DNA accumulation and end-joining. We further find that the disordered central domain regulates DNA polymerase theta multimerization and governs its DNA substrate requirements for end-joining. In summary, these studies identify major regulatory functions for the helicase and central domains in DNA end-joining and the structural organization of DNA polymerase theta. / Biomedical Sciences
|
Page generated in 0.048 seconds