Spelling suggestions: "subject:"rolandischer model""
1 |
Stochastická dynamika bublin v DNA / Stochastická dynamika bublin v DNAKaiser, Vojtěch January 2011 (has links)
Název práce: Stochastická dynamika bublin v DNA Autor: Bc. Vojtěch Kaiser Katedra: Katedra fyziky kondenzovaných látek Vedoucí diplomové práce: RNDr. Tomáš Novotný, Ph.D., Katedra fyziky kondenzovaných látek Abstrakt: Bubliny v DNA jsou místa, kde se vlivem tepelných či torsních vlivů otevírá dvojšroubovice DNA. Tyto bubliny jsou považovány za důležité pro termodynamiku DNA [56] a biologické procesy s DNA spojené [23,40,43,49]. V článcích [38, 39] byla řešena stochastická dynamika bublin v DNA na zá- kladě Polandova-Scheragova modelu a získány analytické výsledky při tep- lotě denaturace DNA a pro asymptotiku dlouhých časů, zvláště pro hustotu pravděpodobnosti času setkání konců bubliny. V této práci navazujeme na tyto výsledky a počítáme celkový tvar této hustoty pravděpodobností s vy- užitím numerické inverse analytických vztahů v Laplacově obraze. Dále po- čítáme hustotu pravděpodobnosti místa setkání konců bubliny. Odpovídající výsledky jsou numericky spočteny v případě molekul DNA konečné délky. Zachycování bubliny v oblastech bohatých na AT páry je modelováno jako subdifusivní systém dle článku [42] a jsou počítány stejné veličiny jako pro difusivní model. V závěru diskutujeme tyto výsledky a možnost jejich experi- mentálního ověření. Klíčová slova: bubliny v DNA,...
|
2 |
The generalized Poland-Scheraga model : bivariate renewal approach to DNA denaturation. / Le modèle de Poland-Scheraga généralisé : une approche de renouvellement bidimensionnel pour la dénaturation de l’ADNKhatib, Maha 12 October 2016 (has links)
Le modèle de Poland-Scheraga (PS) est le modèle standard pour étudier la transition de dénaturation de deux brins d’ADN complémentaires et de même longueur. Ce modèle a fait l’objet d’une attention remarquable car il est exactement résoluble dans sa version homogène. Le caractère résoluble est lié au fait que le modèle PS homogène peut être mis en correspondance avec un processus de renouvellement discret. Dans la littérature biophysique une généralisation du modèle, obtenue en considérant des brins non complé- mentaires et de longueurs différentes, a été considérée et le caractère résoluble s’étend à cette généralisation substantielle. Dans cette thèse, nous présentons une analyse mathématique du modèle de Poland- Scheraga généralisé. Nous considérons d’abord le modèle homogène et nous exploitons que les deux brins de la chaîne peuvent être modélisés par un processus de renouvellement en deux dimensions. La distribution K(⋅) de l’emplacement (bidimensionnel) du premier contact entre les deux brins est supposée de la forme K(n+m) = (n+m)−α−2L(n+m) avec α ≥ 0 et L(⋅) à variation lente et correspond à une boucle avec n bases dans le premier brin et m dans le deuxième. Nous étudions la transition de localisation-délocalisation et nous montrons l’existence des transitions à l’intérieur de la phase localisée. Nous présentons ensuite des estimations précises sur les propriétés de chemin du modèle. Ensuite, nous étudions la version désordonnée du modèle en incluant une séquence de variables aléatoires indépendantes identiquement distribuées à deux indices. Nous nous concentrons sur l’influence du désordre sur la transition de dénaturation: nous voulons déterminer si la présence des inhomogénéités modifie les propriétés critiques du système par rapport au cas homogène. Nous prouvons que le désordre est non pertinent si α < 1 et nous montrons que pour α > 1, les points critiques gelés et recuits diffèrent (basant sur les techniques de coarse graining et la méthode des moments fractionnaires), ce qui prouve la présence d’un régime de désordre pertinent. / The Poland-Scheraga (PS) model is the standard basic model to study the denaturation transition of two complementary and equally long strands of DNA. This model has enjoyed a remarkable attention because it is exactly solvable in its homogeneous version. The solvable character is related to the fact that the homogeneous PS model can be mapped to a discrete renewal process. In the bio-physical literature a generalization of the model, allowing different length and non complementarity of the strands, has been considered and the solvable character extends to this substantial generalization. In this thesis we present a generalized version of the PS model that allows mismatches and non complementary strands (in particular, the two strands may be of different lengths). We consider first the homogeneous model and we exploit that this model can be mapped to a bivariate renewal process. The distribution K(⋅) of the location (in two dimensions) of the first contact between the two strands is assumed to be of the form K(n + m) = (n + m)−α−2L(n + m) with α ≥ 0 and L(⋅) slowly varying and corresponds to a loop with n bases in the first strand and m in the second. We study the localization-delocalization transition and we prove the existence of transitions inside the localized regime. We then present precise estimates on the path properties of the model. We then study the disordered version of the model by including a sequence of inde- pendent and identically distributed random variables with two indices. We focus on the influence of disorder on the denaturation transition: we want to determine whether the presence of randomness modifies the critical properties of the system with respect to the homogeneous case. We prove that the disorder is irrelevant if α < 1. We show also that for α > 1, the quenched and annealed critical points differ (basing on coarse graining techniques and fractional moment method), proving the presence of a relevant disorder regime.
|
3 |
La dénaturation de l’ADN : une transition de phase en présence de désordre / DNA denaturation : a phase transition with disorderRetaux, Martin 20 October 2016 (has links)
Cette thèse se consacre à l'étude du modèle de dénaturation de l'ADN introduit par Poland et Scheraga dans les années soixante. Les modèles de dépiégeage en milieu aléatoire, avec lesquels la correspondance a été établie, sont également traités. Dans le cas où les interactions entre le système et l’environnement sont homogènes, le problème a été résolu : selon la valeur d'un paramètre géométrique, une transition de phase d'ordre un ou deux se produit. En revanche, lorsque les interactions sont prises aléatoires (on parle d'un système en présence de désordre), nous ne connaissons ni le point critique, ni l'ordre de la transition en régime defort désordre. Pour simplifier le problème, de nombreux auteurs font usage d'une représentation hiérarchique grâce à laquelle une renormalisation exacte de la fonction de partition peut être écrite. Mais à nouveau, la question du point critique et de l'ordre de la transition n'a pas été résolue. Nous avons introduit un nouveau système (Toymodel) plus simple que la version hiérarchique en changeant la forme de la renormalisation. Le problème, ainsi posé, permet de mettre en évidence une famille de distributions qui ne varient presque pas lors d'une renormalisation, avec lesquelles nous avons pu dériver des équations du type Berezinskii-Kosterlitz- Thouless. Aussi, en présence de désordre, la transition de phase n'admet pas de point fixe critique. Ces deux éléments, en accord avec nos résultats numériques, nous poussent à croire que nous sommes en présence d'une transition de phase d'ordre infini. La seconde partie de la thèse rapporte un travail sur le processus simple d'exclusion symétrique, qui est l'un des modèles les plus simples de physique statistique hors d'équilibre pour lequel un état stationnaire est connu. La fonction de grandes déviations a été calculée dans le passé par les approches microscopiques et macroscopiques et ici, nous en avons calculé la première correction de taille finie. Le résultat a ensuite été comparé aux corrections similaires pour des systèmes à l'équilibre. / This thesis is a study of a DNA denaturation model, introduced by Poland and Scheraga during the 1960s. The depinning models with random environment, with which the similarity has been made, are also concerned. If the interactions between the system and the environment are homogeneous, the problem has been solved: depending on the value of a geometrical parameter, a first or a second order phase transition happens. On the other hand, when the interactions are random, we know neither the critical point nor the phase transition order in the case of strong disorder. In order to simplify the problem, some authors have used a hierarchical representation through which an exact renormalization can be written. Despite this simplification, the critical point and the transition order have not been found. By changing the renormalization relation, we introduced a Toy-model which is simpler than the hierarchical version. The new problem leaded us to a family of distributions, which stay almost the same under renormalization, and allow us to derive the Berezinskii-Kosterlitz- Thouless equations. Also, with strong disorder, the phase transition does not have a critical fixed point. These two elements, according to our numerical results, predict that the order transition is infinite. The second part of this thesis reports on a work about the simple symmetric exclusion process, which is one of the simplest out of equilibrium models for which a stationary state is known. The large deviation function has been calculated in the past through microscopic and macroscopic approaches. Here, we calculated the leading finite-size correction. Then the result has been compared to similar corrections for equilibrium systems.
|
Page generated in 0.0836 seconds