• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micro-optic-spectral-spatial-elements (mosse)

Mehta, Alok Ajay 01 January 2007 (has links)
Over a wide range of applications, optical systems have utilized conventional optics in order to provide the ability to engineer the properties of incident infra-red fields in terms of the transmitted field spectral, spatial, amplitude, phase, and polarization characteristics. These micro/nano-optical elements that provide specific optical functionality can be categorized into subcategories of refractive, diffractive, multi-layer thin film dichroics, 3-D photonic crystals, and polarization gratings. The feasibility of fabrication, functionality, and level of integration which these elements can be used in an optical system differentiate which elements are more compatible with certain systems than others. With enabling technologies emerging allowing for a wider range of options when it comes to lithographic nano/micro-patterning, dielectric growth, and transfer etching capabilities, optical elements that combine functionalities of conventional optical elements can be realized. Within this one class of optical elements, it is possible to design and fabricate components capable of tailoring the spectral, spatial, amplitude, phase, and polarization characteristics of desired fields at different locations within an optical system. Optical transmission filters, polarization converting elements, and spectrally selective reflecting components have been investigated over the course of this dissertation and have been coined  MOSSE,' which is an acronym for micro-optic-spectral-spatial-elements. Each component is developed and fabricated on a wafer scale where the thin film deposition, lithographic exposure, and transfer etching stages are decoupled from each other and performed in a sequential format. This facilitates the ability to spatially vary the optical characteristics of the different MOSSE structures across the surface of the wafer itself.

Page generated in 0.1446 seconds