• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical and structural property mapping of soft tissues using spatial frequency domain imaging

Yang, Bin, Ph. D. 17 September 2015 (has links)
Tissue optical properties, absorption, scattering and fluorescence, reveal important information about health, and holds the potential for non-invasive diagnosis and therefore earlier treatment for many diseases. On the other hand, tissue structure determines its function. Studying tissue structural properties helps us better understand structure-function relationship. Optical imaging is an ideal tool to study these tissue properties. However, conventional optical imaging techniques have limitations, such as not being able to quantitatively evaluate tissue absorption and scattering properties and only providing volumetrically averaged quantities with no depth control capability. To better study tissue properties, we integrated spatial frequency domain imaging (SFDI) with conventional reflectance imaging modalities. SFDI is a non-invasive, non-contact wide-field imaging technique which utilizes structured illumination to probe tissues. SFDI imaging is able to accurately quantify tissue optical properties. By adjusting spatial frequency, the imaging depth can be tuned which allows for depth controlled imaging. Especially at high spatial frequency, SFDI reflectance image is more sensitive to tissue scattering property than absorption property. The imaging capability of SFDI allows for studying tissue properties from a whole new perspective. In our study, we developed both benchtop and handheld SFDI imaging systems to accommodate different applications. By evaluating tissue optical properties, we corrected attenuation in fluorescence imaging using an analytical model; and we quantified optical and physical properties of skin diseases. By imaging at high spatial frequency, we demonstrated that absorption in fluorescence imaging can also be reduced because of a reduced imaging depth. This correction can be performed in real-time at 19 frames/second. Furthermore, fibrous structures orientation from the superficial layer can be accurately quantified in a multi-layered sample by limiting imaging depth. Finally, we color rendered SFDI reflectance image at high spatial frequency to reveal structural changes in skin lesions.
2

Simulation de l'imagerie en lumière polarisée : Application à l'étude de l'architecture des "fibres" du myocarde humain / Simulation of the polarized light imaging : To investigate the architecture of "fiber" of the human myocardium

Desrosiers, Paul Audain 21 May 2014 (has links)
La plupart des maladies cardio-vasculaires sont étroitement liées à l’architecture 3D des faisceaux de cardiomyocytes du myocarde humain. Connaitre en détail cette architecture permet de lever un verrou scientifique sur l’organisation spatiale complexe des faisceaux de cardiomyocytes, et offre des pistes pour trouver des solutions pertinentes permettant de guérir ces maladies. A cause de la nature biréfringente des filaments de myosine qui se trouvent dans les cellules cardiomyocyte, l’Imagerie en Lumière Polarisée (ILP) se révèle comme la seule méthode existante permettant d’étudier en détail, l’architecture et l’orientation des faisceaux de cardiomyocytes au sein de la masse ventriculaire. Les filaments de myosine se comportent comme des cristaux uni-axiaux biréfringents, ce qui permet de les modéliser comme les cristaux uni-axiaux biréfringents. L’ILP exploite les propriétés vibratoires de la lumière car l’interaction photonique et atomique entre la lumière et la matière permet de révéler l’organisation structurelle et l’orientation 3D des cardiomyocytes. Le présent travail se base sur la modélisation des différents comportements de la lumière après avoir traversé des faisceaux de cardiomyocytes. Ainsi, un volume 100×100×500 µm3 a été décomposé en plusieurs éléments cubiques qui représentent l'équivalent de l'intersection des cellules de diamètre de 20 µm chacune. Le volume a été étudié dans différentes conditions imitant l’organisation 3D des cardiomyocytes dans différentes régions du myocarde. Les résultats montrent que le comportement du volume change suivant l’arrangement spatial des cardiomyocytes à l’intérieur du volume. Grâce à un modèle analytique développé à l’aide des simulations, il a été possible de connaitre en tout point, l’orientation 3D des cardiomyocytes dans tout le volume. Ce modèle a été implémenté dans un greffon logiciel. Puis, il a été validé avec les piliers des valves auriculo-ventriculaire en comparant les courbes obtenues en simulation numérique à celles obtenues dans la phase expérimentale. De plus, il a été possible de mesurer l’orientation 3D des faisceaux de cardiomyocytes à l’intérieur du pilier. Après cette validation, le modèle a été utilisé sur un cœur humain (sain) en entier. Puis, nous avons extrait les cartographies des orientations 3D (angle azimut, angle d’élévation) des cardiomyocytes, ainsi que la cartographie des niveaux d’homogénéité du myocarde en entier. Pour une confrontation qualitative des mesures de l’orientation 3D obtenues en ILP avec celles en IRM, un cœur humain sain d’un enfant de 14 mois a été prélevé lors de l’autopsie, fixé dans du formol, puis imagé en entier par IRM puis en ILP. Malgré la faible résolution des images en IRM, les résultats obtenus montrent que les mesures de l’orientation 3D des cardiomyocytes issues de ces deux méthodes d’imageries se révèlent quasiment identiques. / Most cardiovascular diseases are closely linked to the 3D cardiomyocytes bundles of the human myocardium. Knowing in detail this architecture allows us to overcome a scientific bottleneck on the complex spatial organization of cardiomyocytes, and offers ways to find appropriate solutions to treat these diseases. The goal of present thesis is then to develop methods and techniques that allow gaining insights into the geometric arrangement of cardiomyocytes or cardiomyocytes bundles in the myocardium. Due to the birefringent nature of myosin filaments that are found in myocardial cells, the Polarized Light Imaging (PLI) appears as the only existing method for studying in detail the architecture and cardiomyocytes bundle orientation in ventricular mass. Myosin filaments react as uniaxial birefringent crystal; thereby it has been modeled as the uniaxial birefringent crystal. The PLI uses the vibration properties of light; the photonic and atomic interaction between light and matter can reveal the structural organization and the 3D cardiomyocytes orientation of the myocardium. The present work is based on modeling the behavior of the light after passing through a cardiomyocytes bundle. Thus, a volume 100 × 100 × 500 μm3 has been decomposed in a number of cubic elements which are equivalent to cardiac cells of diameter of 20 microns. The volume was studied under different conditions to emulate the organization of cardiomyocytes in different regions in human myocardium: isotropic region, heterogeneous region, region with cardiomyocytes bundle crossing. The results showed that the behavior of the volume changes according to the spatial arrangement of cardiomyocytes within the volume. Through an analytical model developed using simulation, it has been possible to know the 3D orientation of cardiomyocytes at any region throughout the volume. This model has been implemented in software as a plugin. Then, it has been validated with the pillars of atrio-ventricular valves by comparing the curves obtained by numerical simulation with those obtained in the experimental phases. Moreover, it has been possible to measure the 3D orientation of cardiomyocytes bundles within the pillars. After validation, the model was applied to an entire human healthy heart. Then, we extracted the mapping of the 3D orientations (azimuth angle, elevation angle) of cardiomyocytes bundles, as well as the mapping of the homogeneity levels of the entire myocardium. For a qualitative comparison of the 3D orientation measurements obtained with the PLI and Magnetic Resonance Imaging (MRI), the healthy human heart of a 14 month old child was extracted at autopsy, then fixed in formalin, and finally imaged by MRI and PLI. Despite the low spatial resolution of MRI images, the results showed that the 3D orientations of cardiomyocytes bundles measured from these two imaging methods appeared almost identical.

Page generated in 0.4308 seconds