• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Association Of P,P'-Dde And Metabolic Disease: A Possible Mechanistic Connection

Mangum, Lauren Heard 09 May 2015 (has links)
Obesity is a disease that increases risk of developing metabolic diseases including insulin resistance (IR), metabolic syndrome (MS), and type 2 diabetes (T2D). Adipose tissue expansion during obesity leads to immune cell infiltration, causing local inflammation and disruption of lipid homeostasis. There is an association between exposure to environmental chemicals, like p,p’-DDE, a metabolite of p,p’-DDT, and diagnosis of obesity, dyslipidemia, IR, and prevalence of MS and T2D. DDE accumulates in fatty tissues and has been shown to have immunomodulatory properties, affecting macrophage and T cell populations. Potential mechanisms were studied by which DDE could modulate adipocyte and immune cell function and facilitate an increased risk of obesity and immune dysregulation, potentially through cyclooxygenase-2 (COX-2). 3T3-L1 preadipocytes and J774A.1 macrophages were studied for the effects of DDE on adipogenesis and macrophage reactivity, respectively. 3T3-L1 cells were induced to differentiate to adipocytes using a sub-optimal differentiation cocktail with increasing concentrations of DDE (0.5uM-100uM). It was determined that DDE enhanced adipogenesis in a concentration dependent manner and the expression of adipogenic and lipogenic genes, indicating that DDE enhances adipogenesis. In J774A.1 cells, the ability of DDE or 10uM NS-398, a specific COX-2 inhibitor, to inhibit the production of the prostaglandins PGE2, PGD2, PGF2a, was assessed in vitro and in a cellree system. DDE or NS-398 followed by immune challenge reduced cellular PG secretion and reduced PG production in a cell free system, indicating that DDE may interfere with lipid mediator signaling. Additionally, DDE or NS-398 exposure altered gene expression in J774A.1 cells following M1 or M2 polarization stimulus. Lastly, male C57Bl mice were exposed to 2mg/kg DDE for 5 days and the macrophage population of the adipose stromal vascular fraction was analyzed by flow cytometry. Adipose from DDE treated animals contained approximately 40% F4/80+CD11b+ macrophages. These results indicate that DDE may alter the homeostasis of adipose tissue by both enhancing adipogenesis and altering the reactivity of the resident macrophage population in a manner that may contribute to adipose dysfunction. These data suggest a possible mechanism by which DDE exposure may contribute to adiposity and adipose tissue dysfunction commonly seen in metabolic disease.

Page generated in 0.0754 seconds