Spelling suggestions: "subject:"poliedros dde newton"" "subject:"poliedros dde mewton""
1 |
"Poliedros de Newton e trivialidade em famílias de aplicações" / Newton polyhedra, triviality in familiesSoares Júnior, Carlos Humberto 13 June 2003 (has links)
Neste trabalho utilizamos a tecnica de construcao de campos de vetores controlados para obter estimativas do valor da filtracao de uma aplicacao polinomial $Theta:R^n,0
ightarrowR^p,0$ para que a familia $f_t=f+tTheta$ seja $C^ell$-$mathcal{G}$-trivial, bi-lipschitz trivial ou topologicamente trivial, onde $ellgeq 1$, $mathcal{G}=mathcal{R}$, $mathcal{C}$ ou $mathcal{K}$ e $f:R^n,0
ightarrow R^p,0$ e um germe de aplicacao polinomial satisfazendo uma condicao de nao-degeneracao com relacao a algum poliedro de Newton. Obtemos tambem resultados sobre a trivializacao $C^ell$-modificada para familias de aplicacoes semi-quase-homogeneas de classe $C^{ell + 1}$, e familias de funcoes Newton nao-degeneradas de classe $C^{ell + 1}$. / In this work we use controlled vector fields to obtain estimates for the filtration of a polynomial map-germ $Theta:R^n,0
ightarrowR^p,0$ such that the family $f_t=f+tTheta$ is $C^ell$-$mathcal{G}$-trivial, bi-Lipschitz trivial, or topologicaly trivial, where $ellgeq 1$, $mathcal{G}=mathcal{R}$, $mathcal{C}$ or $mathcal{K}$ and $f:R^n,0
ightarrowR^p,0$ is a polynomial map-germ satisfying a non-degeneracy condition. Results are also obtained on the modified $C^ell$-trivialization for families of semi-wheighted homogeneous maps of class $C^{ell+1}$ with an isolated sigularity at the origin, and families of Newton non-degenerate functions of class $C^{ell+1}$.
|
2 |
"Poliedros de Newton e trivialidade em famílias de aplicações" / Newton polyhedra, triviality in familiesCarlos Humberto Soares Júnior 13 June 2003 (has links)
Neste trabalho utilizamos a tecnica de construcao de campos de vetores controlados para obter estimativas do valor da filtracao de uma aplicacao polinomial $Theta:R^n,0
ightarrowR^p,0$ para que a familia $f_t=f+tTheta$ seja $C^ell$-$mathcal{G}$-trivial, bi-lipschitz trivial ou topologicamente trivial, onde $ellgeq 1$, $mathcal{G}=mathcal{R}$, $mathcal{C}$ ou $mathcal{K}$ e $f:R^n,0
ightarrow R^p,0$ e um germe de aplicacao polinomial satisfazendo uma condicao de nao-degeneracao com relacao a algum poliedro de Newton. Obtemos tambem resultados sobre a trivializacao $C^ell$-modificada para familias de aplicacoes semi-quase-homogeneas de classe $C^{ell + 1}$, e familias de funcoes Newton nao-degeneradas de classe $C^{ell + 1}$. / In this work we use controlled vector fields to obtain estimates for the filtration of a polynomial map-germ $Theta:R^n,0
ightarrowR^p,0$ such that the family $f_t=f+tTheta$ is $C^ell$-$mathcal{G}$-trivial, bi-Lipschitz trivial, or topologicaly trivial, where $ellgeq 1$, $mathcal{G}=mathcal{R}$, $mathcal{C}$ or $mathcal{K}$ and $f:R^n,0
ightarrowR^p,0$ is a polynomial map-germ satisfying a non-degeneracy condition. Results are also obtained on the modified $C^ell$-trivialization for families of semi-wheighted homogeneous maps of class $C^{ell+1}$ with an isolated sigularity at the origin, and families of Newton non-degenerate functions of class $C^{ell+1}$.
|
3 |
Non-degeneracy of polynomial maps with respect to global Newton polyhedra / Não-degeneração de aplicações polinomiais com respeito à poliedros de Newton globaisHuarcaya, Jorge Alberto Coripaco 02 July 2015 (has links)
Let F : Kn → Kp be a polynomial map, where K = R or C. Motivated by the characterization of the integral closure of ideals in the ring On by means of analytic inequalities proven by Lejeune-Teissier [46], we define the set Sp(F) of special polynomials with respect to F. The set Sp(F) can be considered as a counterpart, in the context of polynomial maps Kn → Kp, of the notion of integral closure of ideals in the ring of analytic function germs (~⌈+. In this work, we are mainly interested in the determination of the convex region S0(F) formed by the exponents of the special monomials with respect to F. Let us fix a convenient Newton polyhedron ⌈ + ~⊆ Rn. We obtain an approximation to S0</sub (F) when F is strongly adapted to ~⊆ +, which is a condition expressed in terms of the faces of ~⌈+ and the principal parts at infinity of F. The local version of this problem has been studied by Bivià-Ausina [4] and Saia [71]. Our result about the estimation of S0(F) allows us to give a lower estimate for the Lojasiewicz exponent at infinity of a given polynomial map with compact zero set. As a consequence of our study of ojasiewicz exponents at infinity we have also obtained a result about the uniformity of the ojasiewicz exponent in deformations of polynomial maps Kn → Kp. Consequently we derive a result about the invariance of the global index of real polynomial maps Rn → Rn. As particular cases of the condition of F being adapted to ~⌈+ there appears the class of Newton non-degenerate polynomial maps at infinity and pre-weighted homogeneous maps. The first class of maps constitute a natural extension for maps of the Newton non-degeneracy condition introduced by Kouchnirenko for polynomial functions. We characterize the Newton non-degeneracy at infinity condition of a given polynomial map F : Kn → Kp in terms of the set S0((F, 1)), where (F, 1) : Kn → Kp+1 is the polynomial map whose last component function equals 1. Motivated by analogous problems in local algebra we also derive some results concerning the multiplicity of F. / Seja F :Kn → Kp uma aplicação polinomial, onde K = C ou K = R. Motivados pela caracterização do fecho integral de ideais no anel On por meio de desigualdades analíticas provadas por Lejeune-Teissier [46], definimos o conjunto Sp(F) de polinomios especiais com respeito a F. O conjunto Sp(F) pode ser considerado como um homólogo, no contexto das aplicações polinomiais Kn → Kp, da noção de fecho integral de ideais no anel de germes de funções analíticas (Kn 0) → K. Neste trabalho, estamos interessados principalmente na determinação da região convexa S0 (F) formado pelos expoentes dos monômios especiais com respeito a F. Fixado um poliedro de Newton conveniente ~⌈ + ~⊆ Rn, é obtida uma aproximação de S0(F), quando F é fortemente adaptada a ⌈ + o qual é uma condição expressada em termos das faces de ~⌈ + e as partes principais no infinito de F. A versão local deste problema foi estudado por Bivià-Ausina [4] e Saia [71]. Nosso resultado sobre a estimativa de S0(F) nos permite dar uma estimativa inferior para o expoente Lojasiewicz no infinito de uma aplicação polinomial Kn → Kp, com conjunto F-1(0) compacto. Como uma consequência do estudo dos expoentes de Lojasiewicz no infinito também foi obtido um resultado sobre a uniformidade do expoente Lojasiewicz em deformações de aplicações polinomiais Kn → Kp e consequentemente, um resultado sobre a invariância do índice global de aplicações polinomiais reais Rn → Rn. Como casos particulares da condição de F ser adaptada a ~⌈ + aparecem a classe de aplicações polinomiais Newton não degeneradas e as aplicações polinomiais pre-quase homogêneas. A primeira classe de aplicações constitui uma extensão natural da condição Newton não-degeneração introduzida por Kouchnirenko para funções polinomiais. Caracterizamos a condição Newton não-degeneração para uma determinada aplicação polinomial F : Kn → Kp em termos do conjunto S0((F, 1)), onde (F, 1) : Kn → Kp+1 é a aplicação polinomial cuja última função componente é igual a 1. Motivados por problemas análogos em álgebra local, também obtivemos alguns resultados sobre a multiplicidade de F.
|
4 |
Non-degeneracy of polynomial maps with respect to global Newton polyhedra / Não-degeneração de aplicações polinomiais com respeito à poliedros de Newton globaisJorge Alberto Coripaco Huarcaya 02 July 2015 (has links)
Let F : Kn → Kp be a polynomial map, where K = R or C. Motivated by the characterization of the integral closure of ideals in the ring On by means of analytic inequalities proven by Lejeune-Teissier [46], we define the set Sp(F) of special polynomials with respect to F. The set Sp(F) can be considered as a counterpart, in the context of polynomial maps Kn → Kp, of the notion of integral closure of ideals in the ring of analytic function germs (~⌈+. In this work, we are mainly interested in the determination of the convex region S0(F) formed by the exponents of the special monomials with respect to F. Let us fix a convenient Newton polyhedron ⌈ + ~⊆ Rn. We obtain an approximation to S0</sub (F) when F is strongly adapted to ~⊆ +, which is a condition expressed in terms of the faces of ~⌈+ and the principal parts at infinity of F. The local version of this problem has been studied by Bivià-Ausina [4] and Saia [71]. Our result about the estimation of S0(F) allows us to give a lower estimate for the Lojasiewicz exponent at infinity of a given polynomial map with compact zero set. As a consequence of our study of ojasiewicz exponents at infinity we have also obtained a result about the uniformity of the ojasiewicz exponent in deformations of polynomial maps Kn → Kp. Consequently we derive a result about the invariance of the global index of real polynomial maps Rn → Rn. As particular cases of the condition of F being adapted to ~⌈+ there appears the class of Newton non-degenerate polynomial maps at infinity and pre-weighted homogeneous maps. The first class of maps constitute a natural extension for maps of the Newton non-degeneracy condition introduced by Kouchnirenko for polynomial functions. We characterize the Newton non-degeneracy at infinity condition of a given polynomial map F : Kn → Kp in terms of the set S0((F, 1)), where (F, 1) : Kn → Kp+1 is the polynomial map whose last component function equals 1. Motivated by analogous problems in local algebra we also derive some results concerning the multiplicity of F. / Seja F :Kn → Kp uma aplicação polinomial, onde K = C ou K = R. Motivados pela caracterização do fecho integral de ideais no anel On por meio de desigualdades analíticas provadas por Lejeune-Teissier [46], definimos o conjunto Sp(F) de polinomios especiais com respeito a F. O conjunto Sp(F) pode ser considerado como um homólogo, no contexto das aplicações polinomiais Kn → Kp, da noção de fecho integral de ideais no anel de germes de funções analíticas (Kn 0) → K. Neste trabalho, estamos interessados principalmente na determinação da região convexa S0 (F) formado pelos expoentes dos monômios especiais com respeito a F. Fixado um poliedro de Newton conveniente ~⌈ + ~⊆ Rn, é obtida uma aproximação de S0(F), quando F é fortemente adaptada a ⌈ + o qual é uma condição expressada em termos das faces de ~⌈ + e as partes principais no infinito de F. A versão local deste problema foi estudado por Bivià-Ausina [4] e Saia [71]. Nosso resultado sobre a estimativa de S0(F) nos permite dar uma estimativa inferior para o expoente Lojasiewicz no infinito de uma aplicação polinomial Kn → Kp, com conjunto F-1(0) compacto. Como uma consequência do estudo dos expoentes de Lojasiewicz no infinito também foi obtido um resultado sobre a uniformidade do expoente Lojasiewicz em deformações de aplicações polinomiais Kn → Kp e consequentemente, um resultado sobre a invariância do índice global de aplicações polinomiais reais Rn → Rn. Como casos particulares da condição de F ser adaptada a ~⌈ + aparecem a classe de aplicações polinomiais Newton não degeneradas e as aplicações polinomiais pre-quase homogêneas. A primeira classe de aplicações constitui uma extensão natural da condição Newton não-degeneração introduzida por Kouchnirenko para funções polinomiais. Caracterizamos a condição Newton não-degeneração para uma determinada aplicação polinomial F : Kn → Kp em termos do conjunto S0((F, 1)), onde (F, 1) : Kn → Kp+1 é a aplicação polinomial cuja última função componente é igual a 1. Motivados por problemas análogos em álgebra local, também obtivemos alguns resultados sobre a multiplicidade de F.
|
Page generated in 0.1915 seconds