• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

"Poliedros de Newton e trivialidade em famílias de aplicações" / Newton polyhedra, triviality in families

Soares Júnior, Carlos Humberto 13 June 2003 (has links)
Neste trabalho utilizamos a tecnica de construcao de campos de vetores controlados para obter estimativas do valor da filtracao de uma aplicacao polinomial $Theta:R^n,0 ightarrowR^p,0$ para que a familia $f_t=f+tTheta$ seja $C^ell$-$mathcal{G}$-trivial, bi-lipschitz trivial ou topologicamente trivial, onde $ellgeq 1$, $mathcal{G}=mathcal{R}$, $mathcal{C}$ ou $mathcal{K}$ e $f:R^n,0 ightarrow R^p,0$ e um germe de aplicacao polinomial satisfazendo uma condicao de nao-degeneracao com relacao a algum poliedro de Newton. Obtemos tambem resultados sobre a trivializacao $C^ell$-modificada para familias de aplicacoes semi-quase-homogeneas de classe $C^{ell + 1}$, e familias de funcoes Newton nao-degeneradas de classe $C^{ell + 1}$. / In this work we use controlled vector fields to obtain estimates for the filtration of a polynomial map-germ $Theta:R^n,0 ightarrowR^p,0$ such that the family $f_t=f+tTheta$ is $C^ell$-$mathcal{G}$-trivial, bi-Lipschitz trivial, or topologicaly trivial, where $ellgeq 1$, $mathcal{G}=mathcal{R}$, $mathcal{C}$ or $mathcal{K}$ and $f:R^n,0 ightarrowR^p,0$ is a polynomial map-germ satisfying a non-degeneracy condition. Results are also obtained on the modified $C^ell$-trivialization for families of semi-wheighted homogeneous maps of class $C^{ell+1}$ with an isolated sigularity at the origin, and families of Newton non-degenerate functions of class $C^{ell+1}$.
2

"Poliedros de Newton e trivialidade em famílias de aplicações" / Newton polyhedra, triviality in families

Carlos Humberto Soares Júnior 13 June 2003 (has links)
Neste trabalho utilizamos a tecnica de construcao de campos de vetores controlados para obter estimativas do valor da filtracao de uma aplicacao polinomial $Theta:R^n,0 ightarrowR^p,0$ para que a familia $f_t=f+tTheta$ seja $C^ell$-$mathcal{G}$-trivial, bi-lipschitz trivial ou topologicamente trivial, onde $ellgeq 1$, $mathcal{G}=mathcal{R}$, $mathcal{C}$ ou $mathcal{K}$ e $f:R^n,0 ightarrow R^p,0$ e um germe de aplicacao polinomial satisfazendo uma condicao de nao-degeneracao com relacao a algum poliedro de Newton. Obtemos tambem resultados sobre a trivializacao $C^ell$-modificada para familias de aplicacoes semi-quase-homogeneas de classe $C^{ell + 1}$, e familias de funcoes Newton nao-degeneradas de classe $C^{ell + 1}$. / In this work we use controlled vector fields to obtain estimates for the filtration of a polynomial map-germ $Theta:R^n,0 ightarrowR^p,0$ such that the family $f_t=f+tTheta$ is $C^ell$-$mathcal{G}$-trivial, bi-Lipschitz trivial, or topologicaly trivial, where $ellgeq 1$, $mathcal{G}=mathcal{R}$, $mathcal{C}$ or $mathcal{K}$ and $f:R^n,0 ightarrowR^p,0$ is a polynomial map-germ satisfying a non-degeneracy condition. Results are also obtained on the modified $C^ell$-trivialization for families of semi-wheighted homogeneous maps of class $C^{ell+1}$ with an isolated sigularity at the origin, and families of Newton non-degenerate functions of class $C^{ell+1}$.
3

Non-degeneracy of polynomial maps with respect to global Newton polyhedra / Não-degeneração de aplicações polinomiais com respeito à poliedros de Newton globais

Huarcaya, Jorge Alberto Coripaco 02 July 2015 (has links)
Let F : Kn &rarr; Kp be a polynomial map, where K = R or C. Motivated by the characterization of the integral closure of ideals in the ring On by means of analytic inequalities proven by Lejeune-Teissier [46], we define the set Sp(F) of special polynomials with respect to F. The set Sp(F) can be considered as a counterpart, in the context of polynomial maps Kn &rarr; Kp, of the notion of integral closure of ideals in the ring of analytic function germs (~&lceil;+. In this work, we are mainly interested in the determination of the convex region S0(F) formed by the exponents of the special monomials with respect to F. Let us fix a convenient Newton polyhedron &lceil; + ~&sube; Rn. We obtain an approximation to S0</sub (F) when F is strongly adapted to ~&sube; +, which is a condition expressed in terms of the faces of ~&lceil;+ and the principal parts at infinity of F. The local version of this problem has been studied by Bivià-Ausina [4] and Saia [71]. Our result about the estimation of S0(F) allows us to give a lower estimate for the Lojasiewicz exponent at infinity of a given polynomial map with compact zero set. As a consequence of our study of ojasiewicz exponents at infinity we have also obtained a result about the uniformity of the ojasiewicz exponent in deformations of polynomial maps Kn &rarr; Kp. Consequently we derive a result about the invariance of the global index of real polynomial maps Rn &rarr; Rn. As particular cases of the condition of F being adapted to ~&lceil;+ there appears the class of Newton non-degenerate polynomial maps at infinity and pre-weighted homogeneous maps. The first class of maps constitute a natural extension for maps of the Newton non-degeneracy condition introduced by Kouchnirenko for polynomial functions. We characterize the Newton non-degeneracy at infinity condition of a given polynomial map F : Kn &rarr; Kp in terms of the set S0((F, 1)), where (F, 1) : Kn &rarr; Kp+1 is the polynomial map whose last component function equals 1. Motivated by analogous problems in local algebra we also derive some results concerning the multiplicity of F. / Seja F :Kn &rarr; Kp uma aplicação polinomial, onde K = C ou K = R. Motivados pela caracterização do fecho integral de ideais no anel On por meio de desigualdades analíticas provadas por Lejeune-Teissier [46], definimos o conjunto Sp(F) de polinomios especiais com respeito a F. O conjunto Sp(F) pode ser considerado como um homólogo, no contexto das aplicações polinomiais Kn &rarr; Kp, da noção de fecho integral de ideais no anel de germes de funções analíticas (Kn 0) &rarr; K. Neste trabalho, estamos interessados principalmente na determinação da região convexa S0 (F) formado pelos expoentes dos monômios especiais com respeito a F. Fixado um poliedro de Newton conveniente ~&lceil; + ~&sube; Rn, é obtida uma aproximação de S0(F), quando F é fortemente adaptada a &lceil; + o qual é uma condição expressada em termos das faces de ~&lceil; + e as partes principais no infinito de F. A versão local deste problema foi estudado por Bivià-Ausina [4] e Saia [71]. Nosso resultado sobre a estimativa de S0(F) nos permite dar uma estimativa inferior para o expoente Lojasiewicz no infinito de uma aplicação polinomial Kn &rarr; Kp, com conjunto F-1(0) compacto. Como uma consequência do estudo dos expoentes de Lojasiewicz no infinito também foi obtido um resultado sobre a uniformidade do expoente Lojasiewicz em deformações de aplicações polinomiais Kn &rarr; Kp e consequentemente, um resultado sobre a invariância do índice global de aplicações polinomiais reais Rn &rarr; Rn. Como casos particulares da condição de F ser adaptada a ~&lceil; + aparecem a classe de aplicações polinomiais Newton não degeneradas e as aplicações polinomiais pre-quase homogêneas. A primeira classe de aplicações constitui uma extensão natural da condição Newton não-degeneração introduzida por Kouchnirenko para funções polinomiais. Caracterizamos a condição Newton não-degeneração para uma determinada aplicação polinomial F : Kn &rarr; Kp em termos do conjunto S0((F, 1)), onde (F, 1) : Kn &rarr; Kp+1 é a aplicação polinomial cuja última função componente é igual a 1. Motivados por problemas análogos em álgebra local, também obtivemos alguns resultados sobre a multiplicidade de F.
4

Non-degeneracy of polynomial maps with respect to global Newton polyhedra / Não-degeneração de aplicações polinomiais com respeito à poliedros de Newton globais

Jorge Alberto Coripaco Huarcaya 02 July 2015 (has links)
Let F : Kn &rarr; Kp be a polynomial map, where K = R or C. Motivated by the characterization of the integral closure of ideals in the ring On by means of analytic inequalities proven by Lejeune-Teissier [46], we define the set Sp(F) of special polynomials with respect to F. The set Sp(F) can be considered as a counterpart, in the context of polynomial maps Kn &rarr; Kp, of the notion of integral closure of ideals in the ring of analytic function germs (~&lceil;+. In this work, we are mainly interested in the determination of the convex region S0(F) formed by the exponents of the special monomials with respect to F. Let us fix a convenient Newton polyhedron &lceil; + ~&sube; Rn. We obtain an approximation to S0</sub (F) when F is strongly adapted to ~&sube; +, which is a condition expressed in terms of the faces of ~&lceil;+ and the principal parts at infinity of F. The local version of this problem has been studied by Bivià-Ausina [4] and Saia [71]. Our result about the estimation of S0(F) allows us to give a lower estimate for the Lojasiewicz exponent at infinity of a given polynomial map with compact zero set. As a consequence of our study of ojasiewicz exponents at infinity we have also obtained a result about the uniformity of the ojasiewicz exponent in deformations of polynomial maps Kn &rarr; Kp. Consequently we derive a result about the invariance of the global index of real polynomial maps Rn &rarr; Rn. As particular cases of the condition of F being adapted to ~&lceil;+ there appears the class of Newton non-degenerate polynomial maps at infinity and pre-weighted homogeneous maps. The first class of maps constitute a natural extension for maps of the Newton non-degeneracy condition introduced by Kouchnirenko for polynomial functions. We characterize the Newton non-degeneracy at infinity condition of a given polynomial map F : Kn &rarr; Kp in terms of the set S0((F, 1)), where (F, 1) : Kn &rarr; Kp+1 is the polynomial map whose last component function equals 1. Motivated by analogous problems in local algebra we also derive some results concerning the multiplicity of F. / Seja F :Kn &rarr; Kp uma aplicação polinomial, onde K = C ou K = R. Motivados pela caracterização do fecho integral de ideais no anel On por meio de desigualdades analíticas provadas por Lejeune-Teissier [46], definimos o conjunto Sp(F) de polinomios especiais com respeito a F. O conjunto Sp(F) pode ser considerado como um homólogo, no contexto das aplicações polinomiais Kn &rarr; Kp, da noção de fecho integral de ideais no anel de germes de funções analíticas (Kn 0) &rarr; K. Neste trabalho, estamos interessados principalmente na determinação da região convexa S0 (F) formado pelos expoentes dos monômios especiais com respeito a F. Fixado um poliedro de Newton conveniente ~&lceil; + ~&sube; Rn, é obtida uma aproximação de S0(F), quando F é fortemente adaptada a &lceil; + o qual é uma condição expressada em termos das faces de ~&lceil; + e as partes principais no infinito de F. A versão local deste problema foi estudado por Bivià-Ausina [4] e Saia [71]. Nosso resultado sobre a estimativa de S0(F) nos permite dar uma estimativa inferior para o expoente Lojasiewicz no infinito de uma aplicação polinomial Kn &rarr; Kp, com conjunto F-1(0) compacto. Como uma consequência do estudo dos expoentes de Lojasiewicz no infinito também foi obtido um resultado sobre a uniformidade do expoente Lojasiewicz em deformações de aplicações polinomiais Kn &rarr; Kp e consequentemente, um resultado sobre a invariância do índice global de aplicações polinomiais reais Rn &rarr; Rn. Como casos particulares da condição de F ser adaptada a ~&lceil; + aparecem a classe de aplicações polinomiais Newton não degeneradas e as aplicações polinomiais pre-quase homogêneas. A primeira classe de aplicações constitui uma extensão natural da condição Newton não-degeneração introduzida por Kouchnirenko para funções polinomiais. Caracterizamos a condição Newton não-degeneração para uma determinada aplicação polinomial F : Kn &rarr; Kp em termos do conjunto S0((F, 1)), onde (F, 1) : Kn &rarr; Kp+1 é a aplicação polinomial cuja última função componente é igual a 1. Motivados por problemas análogos em álgebra local, também obtivemos alguns resultados sobre a multiplicidade de F.

Page generated in 0.1915 seconds