• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 3
  • 3
  • 2
  • Tagged with
  • 131
  • 131
  • 131
  • 44
  • 40
  • 40
  • 25
  • 23
  • 21
  • 19
  • 16
  • 15
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Investigation of South African estuarine microbial species and genome diversity.

Kaambo, Eveline January 2006 (has links)
<p>A study of the microbial diversity in sediments of the Great Berg River estuary is carried out using modern molecular phylogenetic methods. The aim of this study was to determine the effect of (pollution by) the effluents of the fish industry on the composition of the microbial community in the sediments. The diversity in microbial groups of sediment samples that received wastewater from the local fishing industry was investigated by a PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) approach and compared to an unaffected site.</p>
52

The Distribution of Environmental Contaminants: a Socio-Historical Study of Selected Neighborhoods in Dallas County, Texas

Cutrer, Jennifer G. 12 1900 (has links)
This research expands on recent sociological studies which maintain that environmental contaminants in America are disproportionately placed in neighborhoods inhabited by minorities and the poor. Prior studies have focused on the predictor variables which identify areas of contamination near residential neighborhoods, yet fail to explore the socio-political and historical factors which contribute to these phenomena. The Environmental Protection Agency's Toxic Release Inventory 1990 database, the Texas Natural Resource Conservation Commission's Annual Report of the Hazardous and Solid Waste Program for 1992, and the U.S. Census Bureau's 1990 Census Data for Dallas County were utilized in pinpointing industries violating toxic release standards. Socio-historical data was obtained from government and historical records and reports, books, and newspaper clippings on Dallas County. Maps and data were obtained from the North Central Texas Council of Governments, and the cities of Dallas and Garland. Chapter I discusses the synergetic forces of capitalism, urban growth, uneven development, and settlement patterns resulting in the distribution of environmental contaminants. Chapter II reviews the literature and presents evidence that race and class are strong predictors of where environmental contaminants are located. Chapter III outlines the data and methods employed. Chapter IV traces the historical development of Dallas County. Chapter V details those political, economic, and social factors contributing to the convergence of people and contaminants within three selected neighborhoods. The forces which historically relegate minorities, particularly Blacks and Hispanics, and the poor to less desirable jobs, cheaper housing, and land costs are also explored. Cheap land and labor attract industry which, in turn, attracts more laborers. Chapter VI, the summary and conclusions, utilizes the socio-spatial approach in examining urban infrastructure development (i.e. roads and railways) which also reduces adjacent land costs making housing more affordable for minorities and the poor. This study concludes that because of historical development and capitalism's exploitation of labor, these populations become entrenched in neighborhoods located adjacent to those industries where contaminants are emitted.
53

Degradation and detoxification of polycyclic aromatic hydrocarbons (PAHs) by photocatalytic oxidation.

January 2002 (has links)
Yip, Ho-yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 181-201). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Contents --- p.vi / List of Figures --- p.x / List of Tables --- p.xvii / Abbreviations --- p.xix / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Polycyclic aromatic hydrocarbons (PAHs) --- p.1 / Chapter 1.1.1 --- Characteristics of PAHs --- p.1 / Chapter 1.1.2 --- Sources of PAHs --- p.2 / Chapter 1.1.3 --- Environmental fates of PAHs --- p.3 / Chapter 1.1.4 --- Effects of PAHs on living organisms --- p.5 / Chapter 1.1.4.1 --- General effects --- p.5 / Chapter 1.1.4.2 --- Effects on plants --- p.6 / Chapter 1.1.4.3 --- Effects on invertebrates --- p.7 / Chapter 1.1.4.4 --- Effects on fishes --- p.7 / Chapter 1.1.4.5 --- Effects on reptiles and amphibians --- p.8 / Chapter 1.1.4.6 --- Effects on birds --- p.9 / Chapter 1.1.4.7 --- Effects on mammals --- p.9 / Chapter 1.2 --- PAH contamination in Hong Kong --- p.10 / Chapter 1.3 --- Treatments of PAH contamination --- p.12 / Chapter 1.3.1 --- Physical treatments --- p.12 / Chapter 1.3.2 --- Chemical treatments --- p.13 / Chapter 1.3.3 --- Biological treatments --- p.14 / Chapter 1.4 --- Advanced oxidation processes (AOPs) --- p.16 / Chapter 1.5 --- Summary --- p.24 / Chapter 2. --- Objectives --- p.27 / Chapter 3. --- Materials and Methods --- p.28 / Chapter 3.1 --- Chemicals --- p.28 / Chapter 3.2 --- Photocatalytic reactor --- p.30 / Chapter 3.3 --- Determination of PAHs concentrations --- p.30 / Chapter 3.3.1 --- Extraction of PAHs --- p.30 / Chapter 3.3.2 --- Quantification of PAHs --- p.32 / Chapter 3.4 --- Optimization of physico-chemical conditions for PCO --- p.37 / Chapter 3.4.1 --- Determination of the reaction time for optimization of PCO --- p.37 / Chapter 3.4.2 --- Effect of titanium dioxide (Ti02) concentration and light intensity --- p.38 / Chapter 3.4.3 --- Effect of initial pH and hydrogen peroxide (H2O2) concentration --- p.38 / Chapter 3.4.4 --- Effect of initial PAHs concentration --- p.39 / Chapter 3.5 --- Toxicity analysis --- p.39 / Chapter 3.5.1 --- Microtox® test for acute toxicity --- p.39 / Chapter 3.5.2 --- Mutatox® test for genotoxicity --- p.42 / Chapter 3.6 --- Determination of total organic carbon (TOC) removal in optimized PCO --- p.43 / Chapter 3.7 --- Determination of degradation pathways --- p.43 / Chapter 3.7.1 --- Extraction of intermediates and/or degradation products --- p.45 / Chapter 3.7.2 --- Identification of intermediates and/or degradation products --- p.45 / Chapter 4. --- Results --- p.49 / Chapter 4.1 --- Determination of PAHs concentrations --- p.49 / Chapter 4.2 --- Optimization of extraction method --- p.49 / Chapter 4.3 --- Optimization of physico-chemical conditions for PCO --- p.49 / Chapter 4.3.1 --- Determination of the reaction time for optimization of PCO --- p.49 / Chapter 4.3.2 --- Effect of Ti02 concentration and light intensity --- p.60 / Chapter 4.3.3 --- Effect of initial pH --- p.88 / Chapter 4.3.4 --- Effect of initial H2O2 concentration --- p.99 / Chapter 4.3.5 --- Effect of initial PAHs concentration --- p.104 / Chapter 4.3.6 --- Improvements on removal efficiency (RE) after optimization --- p.113 / Chapter 4.4 --- Toxicity analysis --- p.122 / Chapter 4.4.1 --- Microtox® test for acute toxicity --- p.122 / Chapter 4.4.2 --- Mutatox® test for genotoxicity --- p.122 / Chapter 4.5 --- Determination of TOC removal in optimized PCO --- p.129 / Chapter 4.6 --- Determination of degradation pathways --- p.129 / Chapter 5. --- Discussion --- p.150 / Chapter 5.1 --- Determination of PAHs concentrations --- p.150 / Chapter 5.2 --- Optimization of extraction method --- p.150 / Chapter 5.3 --- Optimization of physico-chemical conditions for PCO --- p.151 / Chapter 5.3.1 --- Determination of the reaction time for optimization of PCO --- p.151 / Chapter 5.3.2 --- Effects of Ti02 concentration and light intensity --- p.152 / Chapter 5.3.3 --- Effects of initial pH --- p.160 / Chapter 5.3.4 --- Effects of initial H202 concentration --- p.163 / Chapter 5.3.5 --- Effects of initial PAHs concentration --- p.165 / Chapter 5.3.6 --- Improvements on RE after optimization --- p.167 / Chapter 5.4 --- Toxicity analysis --- p.169 / Chapter 5.4.1 --- Microtox® test for acute toxicity --- p.169 / Chapter 5.4.2 --- Mutatox® test for genotoxicity --- p.170 / Chapter 5.5 --- Determination of TOC removal in optimized PCO --- p.171 / Chapter 5.6 --- Determination of detoxification pathways --- p.172 / Chapter 6. --- Conclusion --- p.177 / Chapter 7. --- References --- p.181 / Chapter 8. --- Appendix I --- p.202
54

Assessing the health effects posed by exposure to particulate matter (PM10) in eMbalenhle.

Thabethe, Nomsa Duduzile Lina. January 2012 (has links)
M. Tech. Environmental Health / Particulate Matter (PM) is a complex, heterogeneous mixture of smoke, soot, dust, salt, acids, and metals. Particulate Matter varies in concentration, size, chemical composition, surface area and sources of origin. Given the known ambient particulate pollution problem, the potential health risks posed by PM to the population of eMbalenhle are unknown. eMbalenhle (the study area) is a township located in Mpumalanga Province, about 12 km from Secunda. The area is surrounded by industries, power stations and mines, all of which are recognised emitters of PM. The main aim of this study was to assess the health risks posed by ambient PM10 exposure to the population of eMbalenhle.
55

Impact of alluvial gold mining on surface water quality in the Revue basin-Manica District, Mozambique.

Vicente, Enoque Mendes. January 2000 (has links)
The upper part of the Revue basin in the Manica District, Mozambique is located in a mountainous area underlain by rocks of the Manica greenstone belt. This greenstone belt has alluvial gold deposits in the Revue river and its tributaries Chua and Zambuzi. Alluvial gold in the Manica District has been mined by local people using artisanal mining methods (panning) and by small scale companies. The recovery process of gold involves washing of the auriferous gravel with large quantities of water and the surface water quality has been impaired in this process. The aim of this dissertation is to assess the impact of alluvial gold mining on surface water quality in the Revue basin. Physical and chemical characteristics of the surface water were determined upstream of, within and downstream of the mining area and in the main tributaries immediately before flowing into the Revue river. Upstream of the mining area the water is clear and the rock types of the Manica greenstone belt are likely to be the only source of metals dissolved in the water. Metal concentrations are generally low except Cd, Mo and Ni but the water in this area meets all World Health Organization (WHO) recommendations for drinking water. In contrast within the mining area there are signs of pollution. The water is cloudy and the highest concentrations of most metals are found in the lower part of this area where mining activity is very intense. Thus, the alluvial gold mining is responsible for elevated metal concentrations and constitutes the major point source of pollution in the Revue basin. Water quality within the mining area has been affected and metals Ba, Pb and Mn have concentrations exceeding the WHO recommended values for drinking water. Downstream of the mining area the impounded water in the Chicamba Dam, which is the source of potable water for Chimoio City, reduces the water flow in the Revue river and sedimentation of suspended sediments occurs, together with associated adsorption and precipitation processes. This result in general improvement of water quality with only Ba and Pb concentrations remaining above the WHO recommended values for drinking water. Increase in concentration of metals AI, Ba, K, Pb and Sr occurring in the Chicamba Dam is likely to be due to input to the dam of water from rivers which cross the Granite-gneiss Complex. Geochemical speciation modelling using MINTEQA2 program suggests that the behaviour of metals Cr, AI, Mn and Fe is controlled by redox and precipitation reactions while the behaviour of As, Cd, Zn, Cu, Ni, Pb, Ba and Ca is controlled by adsorption on the sediment surfaces. Changes in environmental conditions, such as pH and dissolved organic matter (DOM) could result in metals being released back into the water. Modelling the effect of a change in pH and variation in DOM indicate that adsorption and precipitation would decrease with decreasing pH values and with increasing DOM. The chemical form of dissolved metals, the type of interactive processes (absorption and precipitation) and concentration of particulate matter gives the distribution of pollutants while the transport process affect the fate of pollutants in the Revue river water. / Thesis (M.Sc.)-University of Natal, Durban, 2000.
56

Methods to predict and reduce trace metal levels in lettuce grown on contaminated urban soils = Méthodes pour prédire et réduire les métaux traces dans la laitue cultivés sur des sols contaminés / Méthodes pour prédire et réduire les métaux traces dans la laitue cultivés sur des sols contaminés

Tambasco, Giuseppe. January 1998 (has links)
The work in this thesis demonstrates whether resins are better than conventional soil extractants at predicting plant metal concentrations, and whether low-cost soil treatments can effectively reduce metal content and concentrations in lettuce leaves. / Researchers have shown that ion exchange resins can simulate root metal uptake behaviour by acting as ion sinks. Chemical extractants on the other hand, generally do not behave in this manner. Thus, we would expect resins (in either bead or membrane form) to predict plant metal concentrations better than conventional extractants. For the first study, a procedure using anion exchange resin membranes (AEM) treated with either EDTA or DTPA chelators was chosen, since previous studies showed this method to be effective at predicting plant metal uptake, and practical for routine laboratory use. In addition, several conventional extractants were selected for comparison. / For the second part of the thesis, a study was undertaken to test the effectiveness of various food processing byproducts to stabilize metal contaminants in soils, and compare the results with those of a Na-based aluminosilicate (zeolite). (Abstract shortened by UMI.)
57

Urban runoff quality in the River Sowe catchment

Hyde, Michael L. January 2006 (has links)
There have been no previous studies carried out on the impact of urban runoff in the Coventry City centre area. The culverted nature of the River Sherbourne, and many of its tributaries, makes the investigation of intermittent pollution and rainfall events expensive and impractical, when using traditional spot sample methods. Storm events have been monitored over a period of over 60 months upstream and downstream of the City, using continuous water quality monitors and auto-spot sample methods. The receiving waters of the River Avon had previously suffered annual fish mortalities as a result of summer storm events causing oxygen depletion. Previous studies (Clifforde and Williams 1997) on the impact of Coventry Sewage Treatment Works effluent on the watercourse, have suggested a major component of the intermittent pollutant load arising from the City (upstream of the Sewage Treatment Works), which requires evaluation and remediation. This research identifies the contaminants found during a series of storm events impacting on the River Sherbourne culvert, and discusses the relationship between them and the increased flow measured. The methodology was divided into 3 Phases; Phase 1 examined all of the watercourses in the River Sowe catchment, and identified the culverted streams and drainage system giving an indication of the presence of pollutant sources. Continuous monitors were deployed within the four identified drainage systems to pinpoint intermittent and illegal contaminated discharges, and these discharges were subsequently redirected to the foul sewer or stopped. Phase 2 examined the quality of the River Sherbourne culvert upstream and downstream of the city centre, and demonstrated (using continuous monitors and automated sampling), that six combined sewer overflows discharging to the watercourse upstream of the culvert were opening unsatisfactorily. The dissolved oxygen levels were significantly reduced during rainfall events (with a loss of diurnal variation), and total ammonium levels exceeded current water quality standards. The results were used to instigate a remediation scheme to replace the overflows with additional foul sewage capacity, and a single high-level storm relief. Phase 3 examined the impact of urban runoff during rainfall events after the improvements made following Phases 1 and 2. The results suggest a marked improvement in the water quality, with little impact from organic pollutants. Dissolved oxygen concentrations remained high during many of the post-remedial rainfall events, and ammonia levels remained largely insignificant. The results indicated a fall in pH levels during the rainfall events and increases in all of the heavy metals analysed, though not beyond current water quality guidelines. The efficiency of using continuous monitoring in Coventry was assessed and likely sources of the contaminants in urban runoff were considered. The statistics of compliance with percentile standards do not allow for short-term pollution or storm events, which may kill all aquatic life whilst not breaching water quality standards. Using continuous monitors to identify intermittent and illegal discharges in underground drainage systems was an efficient and cost-effective method of reducing the impact of urban runoff in a failing watercourse. The methodology can be applied to other urban areas to identify unidentified illegal and intermittent point sources. Routine monthly monitoring of an urban watercourse may not identify the peaks and troughs associated with rainfall events that may breach toxicological guidelines, and will not identify intermittent and unknown pollutant sources; particularly when discharging outside of normal working hours. This research was a unique and comprehensive investigation into the nature and composition of urban runoff in the City of Coventry, and local data gathered will be invaluable in promoting further research, improving local knowledge of the urban environment in preparation for the Water Framework Directive (2000/60/EC), and in planning for environmental improvements in the future.
58

Trace metal speciation and bioavailability in urban contaminated soils

Ge, Ying, 1974- January 1999 (has links)
Urban soils are often contaminated with trace metals and the toxicity of the metals depends, in part, on their speciation in soil solutions. The objectives of this project were to estimate the metal speciation in urban soils and to evaluate the predictability of soil metal pools on plant uptake. The chemical speciation of Cd, Cu, Ni, Pb and Zn was estimated by using the Windermere Humic Aqueous Model (WHAM). In soil solutions, Cd, Ni and Zn were present mainly as free ions when the solutions were acidic and their organic complexes were dominant as the pH was over 7.5. The other two metals mostly formed complexes with organic ligands. The activities of Cd2+, Cu2+, Ni2+, Pb2+ and Zn 2+ were affected by soil pH and total soil metal burdens. All five metals were under-saturated with respect to the minerals which could potentially control the metal solubility. / Metal uptake by plants in the contaminated railway yards was generally not correlated with free, dissolved and total soil metal pools. A pot experiment demonstrated better correlations between the metal pools and the metal content in wild chicory. Multiple regression analysis showed that the metals in the leaves and roots of wild chicory could be adequately predicted by the soil total metals and soil properties such as pH and exchangeable Ca.
59

Investigation of South African estuarine microbial species and genome diversity.

Kaambo, Eveline January 2006 (has links)
<p>A study of the microbial diversity in sediments of the Great Berg River estuary is carried out using modern molecular phylogenetic methods. The aim of this study was to determine the effect of (pollution by) the effluents of the fish industry on the composition of the microbial community in the sediments. The diversity in microbial groups of sediment samples that received wastewater from the local fishing industry was investigated by a PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) approach and compared to an unaffected site.</p>
60

Soil contamination and plant uptake of metal pollutants released from Cu(In, Ga)Se₂ thin film solar panel and remediation using adsorbent derived from mineral waste material

Su, Lingcheng 15 June 2018 (has links)
The Cu(In,Ga)Se2 (CIGS) thin-film solar panels (TFSPs) are widely used in integrated photovoltaic (PV) and solar power systems because of their perfect PV characteristics and ductility. However, the semiconductor layers of these panels contain potentially toxic metals. In this study, the potential environmental pollution arisen by CIGS TFSP treated as construction trash at the end of their useful life was examined. Acid extraction was used to simulate leaching toxicity followed by burying CIGS TFSP material in different soils, namely a synthetic soil, a Mollisol, and an Oxisol, to determine whether metal pollutants might be released into the soil. A vegetable, Brassica parachinensis L. H. Bariley (VegBrassica), was selected to grow in these polluted soils to investigate the uptake of metals and their bioaccumulation. The simulative remediation of contaminated soils was carried out using a remediation module created by the combination of activated carbon and modified mineral waste material (MMWM) in this research. The activated carbon derived from the waste biomass material was produced by an environmental friendly method, and the MMWM was obtained through a thermal dehydroxylation treatment. The physiochemical properties of MMWM, with focusing on mineral phase transformation, were related to the changes in surface morphology due to dehydroxylation occurred during the process of thermal treatment of MMWM samples, and the adsorption performances of metal (lead, Pb) and organic compound (methyl orange, MO) onto this newly modified MMWM were studied. Furthermore, an end-of-life treatment method was designed and proposed for harmless disposal of CIGS TFSP. Various metals, including Pb, zinc (Zn), nickel (Ni), chromium (Cr), gallium (Ga), copper (Cu), indium (In) and aluminum (Al) were found to be released into the soil and caused contamination when scrapped end-of-life CIGS TFSP were buried, and the rates of metal release changed with the variations of both the amounts of CIGS TFSP material in the soil and the soil properties. The increases in concentrations of heavy metals such as Zn, Cu, Ni, Ga, Pb, In, and Cr were correlated with the amounts of CIGS TFSP material added in soils. The Pollution Index and the Nemerow Contamination Index calculated from our results confirmed that, when buried, the CIGS TFSP material polluted the soil. Plants grew well in the synthetic soil and the Mollisol, but those in the Oxisol showed prominent signs of chlorosis and died after 30 days. The bioaccumulation factor (BF) and concentration of Zn were 3.61 and 296 mg/kg, respectively in VegBrassica grown in the synthetic soil with 10% (200 g to 2 kg of soil) of added CIGS TFSP, while the BF and concentration of In were 3.80 and 13.72 mg/kg, respectively in VegBrassica grown in the Mollisol, indicating that bioaccumulation occurred. The thermally treated MMWM samples showed morphological transformation mainly on surface based on the scanning electron microscopy (SEM) observations, and an increasing trend in BET specific surface area (SSA) from 120 to 500 ℃ followed by a decreasing trend up to 1000 ℃. Thermal modification had successfully improved Pb adsorption capacity up to 515 mg/g, corresponding to MMWM modified at 600 ℃ with an SSA of 6.5 m2/g. The MO adsorption capacity was also improved after thermal treatment of MMWM, which performed the best adsorption of 87.6 mg/g at 400 ℃. The adsorption of Pb and MO were mainly chemisorption and monolayer coverage, as pseudo-second-order model and Langmuir equation displayed good relationships of correlation for Pb and MO adsorption data. It is therefore indicated that the newly designed soil remediation modules could significantly remove metals from the contaminated soils. In summary, c

Page generated in 0.1132 seconds