Spelling suggestions: "subject:"poly(2isopropyloxazoline)"" "subject:"poly(2propyloxazoline)""
1 |
Investigation Of Thermal Characteristics Of A Series Polyoxazolines By Direct Pyrolysis Mass SpectrometryAtilkan, Nurcan 01 February 2011 (has links) (PDF)
In the latest years, many studies especially on characterization and synthesis of polyoxazolines have been made. During these studies, new polyoxazolines such as poly(2-isopropyl-2-oxazoline) (PIPOX), poly(2-(3-butenyl)-2-oxazoline) (PBOX) and modified PBOX were synthesized. However, there has been no investigation on their thermal characteristics such as thermal stability and thermal degradation products.
In this study, thermal degradation characteristics, thermal degradation products and thermal stability of PIPOX, PBOX and modified PBOX polymers PBOX-Perf, PBOX-Thiop, PBOX-Sug, PBOX-SP and PBOX-TP were investigated. In this study mercaptans 1H,1H,2H,2H-perfluoro-octanethiol, 3-mercapto-1,2 propanediol, thio-&beta / -D-glucose derivative and their mixture were used in PBOX modifications. The effect of modification of PBOX with different mercaptans on thermal characteristics was also analyzed.
For the PIPOX, formations of protonated monomer and oligomers from dimer to heptamer were observed. However, when the isopropyl group changes with 3-butenyl group, protonated oligomers up to trimer were observed because the crosslinking formed during the polymerization of unsaturated butenyl inhibited the production of oligomers. In addition to this, thermal degradation at lower temperatures was observed.
The change in thermal stability and thermal degradation products were observed as a result of modification of PBOX with different mercaptans. Unlike PBOX-Sug thermal degradation started at very low temperatures for PBOX-Thiop and PBOX-Perf. This degradation observed at lower temperatures disappeared for PBOX-SP and PBOX-TP. For PBOX-Perf, PBOX-Sug and PBOX- Thiop, decomposition of side chains at low temperatures and decomposition of the main chain at high temperatures were observed.
Although the same thermal degradation behavior for PBOX-TP and PBOX-Thiop was expected, since PBOX-TP was obtained as a result of modification of PBOX with high amounts of mercaptan used in PBOX-Thiop and small amounts of mercaptan used in the PBOX-Perf, the results show that neither PBOX-Thiop nor PBOX-Perf thermal degradation behavior are dominant. This is also valid for PBOX-SP. PBOX-SP has higher thermal stability when compared to PBOX-Sug.
|
2 |
Étude des poly(2-alkyl-2-oxazoline)s munis d'extrémités hydrophobes en solution aqueuse et à linterface eau/airEl Hajj Obeid, Rodolphe January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
3 |
Étude des poly(2-alkyl-2-oxazoline)s munis d'extrémités hydrophobes en solution aqueuse et à linterface eau/airEl Hajj Obeid, Rodolphe January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
4 |
La poly(2-isopropyl-2-oxazoline) et ses dérivés en solution aqueuse et aux interfacesLafon, Adeline 08 1900 (has links)
La poly(2-isopropyl-2-oxazoline) (PIPOZ) est un polymère thermosensible qui possède une température de solution critique inférieure (LCST) autour de 40 °C en solution aqueuse. Les travaux présentés s’intéressent aux propriétés en solution aqueuse et aux interfaces, de l’homopolymère PIPOZ, d’une PIPOZ fonctionnalisée avec un groupement lipidique (lipo-PIPOZ) et de copolymères à blocs à base de poly(éthylène glycol) et de PIPOZ.
Si elle est régulièrement comparée à son isomère structurel le poly(N-isopropylacrylamide) (PNIPAM), les études sur les propriétés en solution de la PIPOZ sont cependant moins complètes que celles sur le PNIPAM. Le premier objectif des travaux présentés ici est de parfaire la connaissance du comportement en solution de la PIPOZ en présence d’additifs. Les effets de sels et de solvants hydromiscibles sur la solubilité de la PIPOZ ont été investigués par turbidimétrie et microcalorimétrie sur trois homopolymères de masses moléculaires différentes. Contrairement aux solutions de PNIPAM, l’ajout de méthanol à la solution de PIPOZ ne conduit pas au phénomène de cononsolvency où la solubilité du polymère diminue pour une certaine gamme de fractions volumiques de cosolvant. L’effet a néanmoins été observé dans le cas de système PIPOZ/Eau/THF. L’effet de sels sur la solubilité de la PIPOZ suit la série Hofmeister. La présence de sels chaotropes (NaI et NaSCN) en solution ont révélé un effet bien plus important sur la solubilité de la PIPOZ que pour son isomère. Les valeurs de point troubles de la solution de PIPOZ augmentent de plus de 30 °C pour une concentration en sel supérieure à 1 M.
L’autre objectif de cette thèse est de synthétiser un système à base de PIPOZ capable de s’auto-assembler à l’interface air-eau afin de former des films interfaciaux par la technique Langmuir-Blodgett. A cette fin, un amorceur contenant un groupement lipidique (2 chaînes alkyles et un groupement phosphate) a été synthétisé et utilisé pour la polymérisation cationique par ouverture de cycle (CROP) du monomère 2-isopropyl-2-oxazoline conduisant à l’obtention d’un lipo-PIPOZ (Mn = 10 kg.mol-1). L’effet de deux sels (NaSCN et NaCl) sur les films interfaciaux a été étudié. Malgré leur effet opposé sur la solubilité de la PIPOZ en solution, ils conduisent tous les deux à l’expansion de la monocouche de lipo-PIPOZ. Transférés sur des substrats de mica, ces films ont été visualisés par microscopie à force atomique (AFM). La
iv
présence de sels dans la sous-phase lors de la formation de monocouches conduit à la formation d’agrégats d’épaisseur ~ 10 nm dont le diamètre augmente avec la concentration en sel.
Enfin, le dernier objectif est de caractériser les propriétés en solutions de copolymères à blocs PIPOZ-b-PEG-b-PIPOZ. La polymérisation par CROP de la 2-isopropyl-2-oxazoline a été amorcée à partir d’un PEG (Mn = 2 kg.mol-1) bifonctionnel, Le polymère synthétisé (TrOH, Mn = 11 kg.mol-1) a ensuite subit une fonctionnalisation des extrémités de chaînes par des groupements octadécyles conduisant à l’obtention d’un copolymère à blocs téléchélique amphiphile et thermosensible (TrC18). Les propriétés des copolymères en solution aqueuse ont été étudiées par turbidimétrie, diffusion dynamique de la lumière (DLS), microcalorimétrie (DSC), microscopie électronique à transmission et spectroscopie à sonde fluorescente, FT-IR et AFM. Les deux copolymères sont thermosensibles et présentent des valeurs de points troubles de ~ 48 °C pour le copolymère TrOH et de ~ 38 °C pour le copolymère amphiphile. Ce dernier s’auto-assemble à température ambiante et forme, en solution aqueuse, des micelles de type fleurs de rayon hydrodynamique RH ~ 8 nm. L’effet prolongé de la température sur la cristallisation des blocs de PIPOZ a aussi été examinée. Les deux polymères cristallisent en solution aqueuse conduisant à la formation de fibres insolubles dans l’eau.
Mots- / Poly(2-isopropyl-2-oxazoline) (PIPOZ) is a thermosensitive polymer whose lower critical solution temperature (LCST) in water is ~ 40 °C. This thesis focuses on the properties in aqueous solution and on interfaces of new poly(2-isopropyl-2-oxazoline) systems.
PIPOZ is often compared to its structural isomer, the renowned poly(N-isopropylacrylamide) (PNIPAM). If PNIPAM has been the center of thermosensitive polymer research for the last three decades, it is PIPOZ which has recently been gaining interest. The first aim of the thesis is to improve on the knowledge on PIPOZ properties in aqueous solution in the presence of water-soluble additives. Effect of salts and cosolvents were investigated by turbidimetry and microcalorimetry (DSC) on PIPOZ homopolymers of different molecular weights. Effect of salts on PIPOZ solubility follows the Hofmeister series. Chaotropic anions (SCN-, I-) induce a large increase (up to 30 °C) of the cloud point temperature of PIPOZ solution which is 10 times larger than for PNIPAM.
Adding methanol into PNIPAM aqueous solution leads to a decrease in solubility of the polymer. This phenomena is called cononsolvency. Unlike PNIPAM solutions, the addition of methanol in PIPOZ solution does not lead to a cononsolvency effect. Nevertheless, cononsolvency has been observed in the case of THF addition into PIPOZ aqueous solutions.
The second aim of this work was to design and synthesize an amphiphilic PIPOZ able to anchor itself at the air-water interface and to form stable monolayer via the Langmuir-Blodgett technique. For that purpose, a lipidic initiator containing two alkyl chains and a phosphate group, was synthesized and used to initiate the cationic ring opening polymerization (CROP) of 2-isopropyl-2-oxazoline. The obtained amphiphilic (lipo-PIPOZ, Mn = 10 kg.mol-1) forms stable monolayers at the air-water interface. The presence of salt (NaCl or NaSCN) in the sub-phase during the compression of the films leads to expansion of the monolayer even if the salts have opposite effect on PIPOZ solubility in solution. The interfacial films were then transferred onto mica substrates and captured by atomic force microscopy (AFM). The salts induced the formation of aggregates (height ~ 10 nm) whose diameter depends on the salt and its concentration.
At last, a block copolymer, TrOH, containing a central poly(ethylene glycol) (PEG) (Mn = 2 kg.mol-1) and two PIPOZ blocks was obtained by CROP of 2-isopropyl-2-oxazoline initiated
vi
by a bi-functionnal PEG. The total molecular weight was Mn ~ 11 kg.mol-1. Hydrophobic chain ends modification has been performed onto TrOH to bring amphiphilicity and to get a telechelic octadecyl-end capped block copolymer TrC18. The properties of these two block copolymers in water were characterized by dynamic light scattering (DLS), microcalorimetry (DSC), electronic transmission microscopy (TEM) and fluorescence spectroscopy, FT-IR and AFM. Cloud point temperature of copolymer solutions was found to be around 48 °C for TrOH and around 38°C for the amphiphilic analogue TrC18. The latter self-assembles at room temperature into flower micelles whose hydrodynamic radius is RH ~ 8 nm. Extended heating of both copolymer solutions leads to crystallization of PIPOZ block and insoluble fibers form in solution.
|
5 |
Synthèse et étude d’architectures complexes à base de poly(lactide) et de poly(2-isopropyl-2-oxazoline) pour des applications biomédicalesBullet, Jean-Richard 12 1900 (has links)
Le traitement du cancer est l’un des plus grands défis en chimie médicinale moderne. La majorité des traitements utilisés repose sur la chimiothérapie, impliquant l’emploi de molécules bioactives cytotoxiques. Bien qu’efficaces, ces molécules présentent, pour la plupart, des désavantages notoires tels que le manque de spécificité cellulaire et une solubilité limitée en phase aqueuse. Une façon de remédier aux problèmes exposés est de solubiliser ces molécules au sein de matrices polymères. Il existe différents types de matrices qui sont : les liposomes, les micelles, les nanosphères, les nanocapsules, les dendrimères (et les polymères en étoile), et les polymères conjugués et linéaires. Dans cette thèse, nous faisons l’étude de deux matrices polymères potentielles composées de matériaux biocompatibles : le polylactide et la poly(2-isopropyl-2-oxazoline).
La première partie de la thèse, est consacrée à l’étude des polyester-co-éthers portant des groupements pendants fonctionnalisables. Nous avons développé ces copolymères par polymérisation aléatoire en masse de lactones (le lactide ou la caprolactone) et différents taux d’éthers de propargyle et de glycidyle (GPE), à 120°C, en utilisant l’octanoate d’étain comme catalyseur. L’efficacité de la copolymérisation a été mise en évidence par des analyses FTIR, RMN 1H et COSY. Toutefois, L’analyse GPC a montré une diminution de la masse molaire des polymères et un élargissement de la dispersité en rapport avec l’augmentation du taux de glycidyle initial. De plus, les analyses RMN 1H ont montré que le taux de propargyl (provenant de l’éther de glycidyle) au sein du copolymère ne dépassait pas 50%. La faisabilité des modifications post-polymérisation a été évaluée en couplant le (9-azidomethyl) anthracène au chaîne de poly(ester-co-éther)s via la chimie clic CuAAC. Cette méthode s’est révélée inoffensive pour la chaîne de polyesters. Des études de cytotoxicité ont prouvé l’innocuité des poly(ester-co-éther)s. Des nanoparticules sphériques ont été préparées à partir de ces polymères et peuvent être utilisées comme nanosphères pour le transport de molécules bioactives hydrophobes.
La copolymérisation des lactones avec des éthers de glycidyles s’avère être une stratégie intéressante de fonctionnalisation des chaînes des polyesters permettant la synthèse d’une large gamme de copolymères pour des applications biomédicales. Afin d’améliorer la synthèse des poly(ester-co-ether)s, nous avons proposé une approche mécanistique tenant compte des réactions de transfert de chaînes.
Dans la deuxième partie de la thèse, nous avons étudié un polymère en étoile composé d’un polymère thermosensible : la poly(2-isopropyl-2-oxazoline) PIPOZ. Nous avons premièrement exploré deux approches synthétiques afin d’obtenir une série d’étoiles de PIPOZ (S-PIPOZ) de structure bien définié à savoir l’approche « coupling-onto » et l’approche « core-first ». Une première série de S-PIPOZ a été réalisée directement à partir d’un coeur pentaérythrityl tétratosylés par polymérisation cationique par ouverture de cycle (CROP) de 2-isopropyl-2-oxazoline pour l’approche « core-first ». Pour l’approche « coupling-onto », une deuxième série de S-PIPOZ a été réalisée par couplage via la CuAAC entre des PIPOZ-N3 linéaire (L-PIPOZ N3) et un cœur à 4 bras portant des alcynes terminaux. Tous les S-PIPOZs obtenus ont été analysés par RMN 1H, IR, MALLS-LS, des analyses UV et par microcalorimétrie différentielle à balayage (HS-DSC). Les polymères obtenus par l’approche « core-first » ont montré une microstructure mal-définie comparé à ceux obtenus par l’approche « coupling-onto ». Suite à ces résultats, nous avons défini l’approche « coupling-onto » comme voie d’obtention des S-PIPOZ. Une explication sur la structure mal-défini des polymères obtenus par l’approche « core-first » sera développée dans cette section. Nous exposerons aussi une méthode de purification permettant l’élimination rapide et efficace des L-PIPOZ N3 qui contaminent les échantillons de S-PIPOZ faits par l’approche « coupling-onto ». Cette méthode peut être applicable à d’autres polymères thermosensibles dans une certaine gamme de température.
Dans la troisième partie, nous avons étudié l’effet de l’architecture et de la composition des bras-polymères sur la température de transition de phase et les propriétés des S-PIPOZs. Afin d’étoffer notre étude nous avons synthétisé un polymère en étoile à bloc composé de PIPOZ et de poly(éthylène glycol) PEG. Cette étude a été réalisée en examinant des solutions chauffées de polymères (S-PIPOZ, S-PIPOZ-b-PEG et tous les précurseurs linéaires) par des analyses de spectrométrie d’absorption UV, HS-DSC, diffusion de la lumière LS. Nous avons évalué la présence ou l’absence de cristaux au sein d’échantillons de S-PIPOZs provenant de solutions chauffées. Cette évaluation a été réalisée par diffusion des rayons-X aux grands angles (WAXS) et par microscopie électronique à transmission (TEM) et à balayage (SEM). La présence de cristaux est néfaste pour la conception de nanomatériaux destinés à des applications biomédicales. Nous exposons aussi dans cette section une méthode basée sur l’amination réductrice permettant de fonctionnaliser les S-PIPOZ avec différents types de macromolécules.
Cette thèse expose les avantages et les inconvénients (synthèses, fonctionnalisation, structures…) des PLA-co-GPE et des S-PIPOZs et constitue dans son ensemble à une première ébauche vers une conception améliorée de futurs nanomatériaux. / Treatment of cancer is one of the biggest challenges in modern medicinal chemistry. The vast majority of treatments are based on chemotherapy, involving the use of cytotoxic bioactive molecules. Although effective, most of these bioactive molecules have notorious drawbacks, such as the lack of cellular specificity and limited solubility in aqueous media. A way to address these problems is to dissolve these bioactive compounds into polymer matrices. There are different types of matrices, including liposomes, micelles, nanospheres, nanocapsules, dendrimers (and star-polymers), and conjugate and linear polymers. In this thesis, we explored two different prospective polymers that can be used as matrices. Both are composed of biocompatible materials: polylactide and poly(2-isopropyl-2-oxazoline).
The first part of the thesis is dedicated to the investigation of polyester-co-ether with functionalizable pendant groups. First, we developed the polyester-co-ether by copolymerization of lactones (lactide or caprolactone) with different ratios of glycidyl propargyl ether (GPE) in the bulk at 120°C in the presence of Sn(Oct)2. The efficiency of the copolymerization was evidenced by FTIR, 1H and COSY NMR analyses. However, GPC analyses displayed a decrease of molecular weights and a broadening of the molecular weight dispersity with increasing of the epoxide molar ratio in the feed. 1H NMR analyses showed that the propargyl content from the epoxide does not exceed 50%. The feasibility of post-polymerization functionalization was evaluated by coupling anthracene to the poly(ester-co-ether)s through copper-catalyzed alkyne-azide cycloaddition (CuAAC). The polyester chain was found to support this reaction. Toxicity studies showed that the poly(ester-co-ether) was non-toxic. Spherical nanoparticles were prepared from these polymers. They can be suitable nanospheres for drug delivery.
The copolymerization of lactone with glycidyl ether is an interesting approach to functionalize the PLA (or poly(ester)) main chain. It is also a powerful and straightforward strategy to synthesize a large array of functionalized polymers for biomedical applications. In order to improve the synthesis of the polyester-co-ether, we investigated the copolymerization mechanism of the chain transfer reactions leading to the chain reductions and we suggested a mechanistic explanation.
In the second part of this thesis, we focused on developing star-polymers from the thermosensitive (2-isopropyl-2-oxazoline) polymer. In order to prepare a well-defined set of star-poly(2-isopropyl-2oxazoline) S-PIPOZs, we explored two different synthetic approaches: the “coupling-onto” and the “core-first” approach. Two sets of S-PIPOZs were prepared by these approaches. For the “core-first” approach, a set of S-PIPOZ was prepared by direct cationic ring opening polymerization (CROP) from a tetra tosylate-functionnalized pentaerythrityl core. For the “coupling-onto approach”, the S-PIPOZs were prepared by ligation between L-PIPOZ-N3 and a 4-arm core with an alkyne group via CuAAC. The prepared polymers were analysed by 1H NMR, IR, Multi Angles Laser Light Scattering - Gel Permeation Chromatography (MALLS-GPC), UV absorption spectroscopy and High Sensitive Differential Scanning Microcalorimetry (HS-DSC). Polymers obtained by the “core-first” approach shows ill-defined microstructure compared to those obtained by the “coupling-onto” approach. In light of these encouraging results, the “coupling-onto” method was pursued for preparing S-PIPOZ. An explanation on the ill-defined structure will be provided within this thesis. Moreover, we developed a purification method for the fast and efficient removal of free PIPOZs, which otherwise contaminate the star-PIPOZ samples that are prepared by the coupling-onto approach. This method is applicable to other thermosensitive polymers within a certain range of temperature.
In the third part, we focused on the effect of the architecture and composition of the S-PIPOZs on the phase transition temperature of the polymer. For this, we synthesized a hetero-star block copolymer composed of PIPOZ and poly(ethylene glycol) PEG. This study was carried out by examining the aqueous polymer solution (the linear precursors, S-PIPOZs, S-PIPOZ-b-PEG) upon heating via UV spectroscopy, HS-DSC and light scattering. We also assessed the temperature-induced crystallinity of the Star-PIPOZs by Transmission (TEM) and Scanning (SEM) Electron Microscopy, WAXS. This is important for biomedical nanodevices. We also provided a straightforward method, based on aminative reduction, to functionalize the S-PIPOZ with different macromolecules.
This thesis discusses the advantages and the drawbacks related to the synthesis, functionalization, structures of PLA-co-GPE and the star-PIPOZs. Overall, this represents a pioneering study for improving the design of prospective nanodevices.
|
Page generated in 0.0892 seconds