• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 30
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 78
  • 78
  • 78
  • 34
  • 30
  • 14
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rôle de la poly (ADP-ribose) polymérase-1 (PARP-1)dans la réparation de l'ADN par excision de nucléotides

Robu, Mihaela 16 April 2018 (has links)
Les dommages directs induits à l'ADN par les radiations ultraviolettes (UV) sont éliminés grâce à la réparation par excision de nucleotides (NER). La poly(ADP-ribose) polymerase-1 (PARP-1) est une enzyme impliquée dans différentes voies de réparation de l'ADN. Notre laboratoire a montré que la PARP-1 était activée par les dommages directs dus aux UV et que son absence retarde significativement la réparation de ces dommages dans un gène rapporteur viral. Le but de ce projet était de déterminer si la PARP-1 affectait le NER de l'ADN génomique des cellules eucaryotes. Nous avons observé un délai dans la réparation des dommages directs à l'ADN causés par les UV dans les cellules eucaryotes n'exprimant pas la PARP-1. De plus, la PARP-1 immunoprécipite in vivo avec des protéines impliquées dans la phase de reconnaissance de ces dommages. Nos résultats montrent donc que la PARP-1 joue aussi un rôle dans le NER.
12

Proteomique fonctionnelle des poly(ADP-Ribose) polymerases

Moreel, Xavier 16 April 2018 (has links)
L'ADN, support de l'information génétique, subit chaque jour de nombreuses attaques pouvant induire différents types de lésions. Que ce soit d'origine environnementale (agents chimiques), rayonnements ionisants) ou d'origine endogène (métabolisme de L'ADN, radicaux libres), chacun de ces agents peut provoquer des cassures simple ou double-brin dans la molécule d'ADN. Ces lésions doivent être détectées rapidement et réparées fidèlement, afin d'éviter d'engendrer une mutation pouvant déclencher une maladie telle le cancer, ou encore éviter de se transmettre à la descendance. Au cours de l'évolution, la cellule eucaryote a développé différentes voies spécifiques pour répondre à un stress génotoxique. Ainsi il existe un véritable réseau de surveillance et d'évaluation des dommages permettant à la cellule lésée de réparer l'ADN ou d'entrer en apoptose si les dommages sont trop importants. La poly(ADP-ribosyl)ation des protéines est une modification post-traductionnelle qui intervient rapidement dès qu'une cassure dans la molécule d'ADN est détectée. Le polymère est synthétisé à partir du NAD+ par une famille d'enzymes appelées PARP (poly(ADP-ribose)polymérase), dont le rôle principal est la maintien de l'intégrité du génome. Cette modification affecte les propriétés physico-chimiques ainsi que la fonction des protéines cibles. Celle-ci permet, entre autre, le recrutement des enzymes de réparation de l'ADN. Ce signal demeure toutefois transitoire, le polymère formé étant rapidement dégradé par la PARG (poly(ADP-ribose)glycohydrolase. Ce travail présente une analyse structurale de la PARP-3, un membre peu caractérisé de la famille PARP, ainsi qu'une analyse fonctionnelle de mutants de phosphorylation de la PARP-1 (premier article) qui montre que la phosphorylation du premier doigt de zinc de cette protéine altère son recrutement et sa persistance aux sites de cassure de l'ADN. Par ailleurs, de nombreuses évidences montrent que que la poly(ADP-ribosyl)ation des protéines peut survenir dans un contexte autre que les dommages à l'ADN, le second article présente les métabolismes qui peuvent être associés aux PARP-1 et 2 ainsi qu'à la PARG et monte un possible nouveau rôle biologique pour la PARP-1.
13

Analyses biochimique et protéomique de la poly(ADP-ribosyl)ation

Tardif, Maxime 17 April 2018 (has links)
La poly(ADP-ribosyl)ation est une modification post-traductionnelle qui est stimulée en réponse à des dommages à l'ADN. Les poly(ADP-ribose) polymerases (PARPs) synthétisent des polymères branchés de poly(ADP-ribose) (PAR) qui peuvent se lier de manière covalente et non-covalente à des protéines jouant ainsi un rôle dans des processus tels que la progression du cycle cellulaire, la réparation de l'ADN, la stabilité de l'intégrité génomique et l'apoptose. Le cycle de dégradation du PAR induit aussi une variation des réserves en nucleotides comme le NAD+, l'ATP et l'AMP, influençant les voies énergétiques des cellules. Les techniques de « Matrix Assisted Laser Desorption Ionisation » (MALDI) et de quantification de nucleotides par colorimétrie, fluorométrie et HPLC ont été utilisées pour déterminer de nouveaux partenaires protéiques interagissant avec le polymère d'ADPr, par l'entremise d'interaction directe, covalente et non-covalente, ou par l'entremise d'interaction indirecte, via le cycle de synthèse/dégradation du PAR qui induit d'importants changements métaboliques cellulaires.
14

Charting PARP-1 dependent mechanisms for DNA double-strand break resection

O'Sullivan, Julia 20 December 2021 (has links)
L'intégrité de l'ADN génomique humain est maintenue par des systèmes de réparation de l'ADN qui protègent les cellules des dommages causés par des agents environnementaux ou des lésions spontanées de l'ADN. Chaque cellule peut subir jusqu'à 10⁵ lésions par jour, y compris les cassures double-brin de l'ADN (CDB). La poly(ADPribosyl)ation (PARylation) est l'un des premiers événements de signalisation moléculaire survenant aux CDBs. Il est catalysé par les poly(ADP-ribose)polymérases (PARP) qui sont directement activées par ces lésions d'ADN. Le fait de ne pas générer de poly(ADP)ribosyl (pADPr) en réponse à des dommages à l'ADN par une inhibition chimique ou par l'absence de PARP-1 augmente la sensibilité cellulaire au stress génotoxique, indiquant que la pADPr elle-même est une molécule clé de signalisation des dommages à l'ADN. L'inhibition de l'enzyme de signalisation des dommages à l'ADN, la poly(ADP-ribose) polymérase-1 (PARP-1) est l'une des nouvelles thérapies les plus prometteuses contre le cancer. Les inhibiteurs de PARP sensibilisent les cellules cancéreuses aux agents endommageant l'ADN et tuent efficacement les cellules cancéreuses du sein, des ovaires et du pancréas déficientes en BRCA1 (Breast Cancer gene 1) et BRCA2 (Breast Cancer gene 2), ce qui suggère que les cellules déficientes en réparation des CDBs sont extrêmement sensibles à l'inhibition de PARP. Pourtant, les mécanismes sous-jacents à cette létalité synthétique entre le déficit de réparation du CDB et l'inhibition de PARP restent mal définis. Il y a un débat considérable sur le mécanisme par lequel l'inhibition de PARP tue les cellules déficientes en réparation de l'ADN, et le plein potentiel des inhibiteurs de PARP dans le traitement du cancer ne peut être obtenu que par une compréhension claire des voies de réponse aux dommages de l'ADN (DDR) aux CDB et comment ils sont affectés par les inhibiteurs de PARP. L'objectif général de ma thèse est d'étudier le rôle de PARP-1 dans la réparation DSB et d'identifier les interacteurs de PARP-1 qui jouent également un rôle dans ce processus. Les cellules eucaryotes réparent les CDBs par deux voies principales, la jonction d'extrémité non homologue (NHEJ) et la recombinaison homologue (HR). La HR est initiée par la liaison des CDBs par BRCA1 et le complexe MRE11-RAD50-NBS1 et des nucléases EXO1/DNA2 pour générer de l'ADN simple-brin, qui est ensuite utilisé par la recombinase RAD51 et le complexe BRCA1-PALB2-BRCA2. Une question clé dans notre domaine concerne les facteurs critiques pour réguler le choix de la voie CDB. HR est initiée à partir d'extrémités DSB hautement résectées, tandis que dans le NHEJ, la résection est empêchée par des facteurs de réparation clés incluant RIF1 et 53BP1. En utilisant des cellules déficientes en PARP-1, nous avons observé que deux inhibiteurs de la résection de l'ADN et des régulateurs de choix de voie, RIF1 et 53BP1, la formation de foyers induits par des dommages à l'ADN sont fortement altérés. Cela confirme notre hypothèse selon laquelle PARP-1 participe à la réparation du DSB en influençant la résection de l'ADN. Afin de mieux comprendre le mécanisme de résection et le rôle que PARP-1 y joue, nous avons identifié d'autres protéines qui interagissent avec PARP-1 et modulent ce processus. Pour ce faire, nous avons utilisé des données sur les protéines de liaison au pADPr générées à la fois dans notre laboratoire et celui de notre collaborateur Ted Dawson de Johns Hopkins. Les candidats sélectionnés à partir de ces listes ont été criblés pour identifier une seule cible qui démontrerait un phénotype similaire à la perte de PARP-1. Deux cibles initiales ont été explorées et finalement une seule protéine à doigt de zinc a été choisie comme cible principale. Nous devons relever la fonction de ce doigt de zinc en HR, dans l'espoir qu'il permettra de découvrir davantage les mécanismes de PARP-1 en résection. En résumé, cette thèse élucide le rôle de PARP-1 dans la résection de l'ADN et identifie une protéine à doigt de zinc non étudiée auparavant qui interagit avec PARP-1 et partage une fonction similaire à PARP-1 dans la résection de l'ADN. / The integrity of human genomic DNA is maintained by DNA repair systems that will protect cells from damage by environmental agents or spontaneous DNA lesions. Each cell can experience up to 10⁵ lesions daily, including DNA double-strand breaks (DSB)s. Poly(ADP-ribosyl)ation (PARylation) is one of the earliest molecular signalling events occurring at DNA DSBs. It is catalysed by poly(ADP-ribose) polymerases (PARPs) that are directly activated by those DNA lesions. Failure to generate pADPr in response to DNA damage by either chemical inhibition or absence of PARP-1 increases the cellular sensitivity to genotoxic stress, indicating that pADPr itself is a key DNA damage signalling molecule. Inhibition of the DNA damage signalling enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is among the most promising new therapies in cancer. PARP inhibitors sensitize cancer cells to DNA damaging agents and efficiently kill BRCA1- and BRCA2-deficient breast, ovarian and pancreatic cancer cells, suggesting that cells deficient in DSB repair are exquisitely sensitive to PARP inhibition. Yet, the mechanisms underlying this synthetic lethality between DSB repair deficiency and PARP inhibition remain poorly defined. There is considerable debate about the mechanism through which PARP inhibition kills DNA repair-deficient cells, and the full benefit of PARP inhibitors in cancer therapy can only be achieved by a clear understanding of the DNA damage response (DDR) pathways to DSBs and how these are affected by PARP inhibitors. The overall aim of my PhD is to investigate the role of PARP-1 in DSB repair and identify interactors of PARP-1 which also play a role in this process. Eukaryotic cells repair DSBs by two major pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). HR is initiated by the binding of DSB by BRCA1 and the end resection of the DSB by MRE11 (and the associated NBS1, RAD50, CtIP, and EXO1) to generate single-stranded DNA, which is further processed by RAD51 and BRCA1-PALB2-BRCA2. A key question in our field regards which factors are critical for regulating the DSB pathway choice. HR is initiated from highly resected DSB ends, whereas in NHEJ, resection is prevented by key repair factors that include RIF1 and 53BP1. Using PARP-1-deficient cells, we have observed that two inhibitors of DNA resection and regulators of pathway choice, RIF1 and 53BP1, are strongly impaired in forming DNA damage-induced foci. This supports our hypothesis that PARP-1 participates in DSB repair by influencing DNA resection. In order to further understand the mechanism of resection and the role that PARP-1 plays in it we also aim to identify other proteins which interact with PARP-1 and modulate this process. To accomplish this, we made use of data on PAR binding proteins generated both in our lab and that of our collaborator Ted Dawson. The candidates selected from these lists were screened to identify a single target that would demonstrate a similar phenotype to PARP-1 loss. Two initial targets were further explored and finally a single zinc finger protein was selected as our primary target. We aim to characterize the function of this zinc finger in HR, in the hopes that it will further uncover the mechanisms of PARP-1 in resection. In summary this thesis elucidates the role of PARP-1 in DNA resection and identifies a previously unstudied zinc finger protein which interacts with PARP-1 and shares a similar function to PARP-1 in DNA resection.
15

La réponse aux radiations ionisantes : une analyse chez le nématode Caenorhabditis elegans /

Dequen, Florence. January 2004 (has links)
Thèse (M.Sc.)--Université Laval, 2004. / Bibliogr.: f. 106-126. Publié aussi en version électronique.
16

Investigating the Role of PARylation in Regulating Skeletal Muscle Mass and Function in Healthy Mature Mice

Pandey, Dheeraj 17 November 2023 (has links)
Adenosine diphosphate (ADP) ribosylation is a post-translational modification dependent on the transfer of ADPr units from nicotinamide adenine dinucleotide (NAD+) on to a plethora of biomolecules (i.e., proteins, DNA, RNA, etc.) in response to physiological stressors (i.e., nutrient deprivation, oxidative stress, DNA strand breaks). Poly-ADP-ribosylation (PARylation) is primarily mediated by the family of poly(ADP-ribose) polymerases (PARPs) and enzymatically degraded (dePARylation) by hydrolases such as poly(ADP-ribose) glycohydrolase (PARG). This thesis characterizes the role of poly(ADP-ribose) polymerase 1 (PARP1) and PARG in the skeletal muscle of healthy mature mice under normal physiological conditions. Specifically, we validate the deletion of Parp1 and Parg in inducible skeletal muscle-specific KO mouse models followed by performing general phenotyping of both male and female mice. The thesis concludes that under normal physiological conditions the activity of Parp1 or Parg in (de)PARylation is dispensable for maintaining skeletal muscle mass, function, and homeostasis in healthy mature mice.
17

Toward a Quantitative Analysis of PARP-1 and Poly(ADP-ribosyl)ation in Cellular Senescence

Edmonds, Yvette M. 02 September 2010 (has links)
Aging is a complicated and multifactorial phenomenon. Model systems involving the induction of replicative senescence in cultured cells have been indispensable in elucidating some of the mechanisms underlying this complex process. An understanding of how and why cellular senescence occurs is thus critical to the field of aging research. While there is much correlative evidence to suggest a connection between poly(ADP-ribose) (PAR) and mammalian longevity, no studies have been done to explore a possible role for PARP-1 — the enzyme responsible for synthesis of 90% of cellular PAR — in mechanisms of senescence. Furthermore, many techniques currently used for analysis of protein poly(ADP-ribosyl)ation are fraught with imprecision. We therefore sought to address these issues both by developing methods for the unambiguous analysis of poly(ADP-ribosyl)ation by mass spectrometry, and by exploring the role of PARP-1 in nicotinamide-mediated cellular lifespan extension. Due to the challenges introduced by PAR's biochemical characteristics, successful mass spectrometric analysis of poly(ADP-ribosylation) will require the use of techniques to reduce the mass, charge, and heterogeneity of the polymer, as well as methods to enrich for poly(ADP- ribosyl)ated protein. To this end, we evaluated the effectiveness of several approaches, including ammonium sulfate fractionation, boronate affinity chromatography, snake venom phosphodiesterase digestion, manipulation of PARP-1 reaction conditions, and immobilized metal affinity chromatography (IMAC) for the preparation of poly(ADP-ribosyl)ated protein samples prior to MS analysis using both MALDI-TOF and Q-TRAP LC-MS. Based on this work, we developed a three-tiered scheme that may provide the first ever identification of poly(ADP- ribosyl)ated peptides from full-length wild-type PARP-1 by mass spectrometry. Past work in our laboratory has demonstrated that nicotinamide (NAM), a component of vitamin B3, significantly extends the replicative lifespan of human fibroblasts. In order to help elucidate the role of PARP-1 in cellular senescence, we then analyzed the poly(ADP-ribosyl)ation response of aging cells undergoing NAM-mediated lifespan extension. While NAM is a known PARP-1 inhibitor, we found that oxidative stress-induced poly(ADP- ribosyl)ation is increased, not decreased, in NAM-treated cells. We propose that supplemented NAM is taken up by the NAD salvage pathway, ultimately leading to increased cellular NAD and extending replicative lifespan by both preventing PARP-mediated NAD depletion and upregulating SIRT1. We further propose that the demonstrated protective effects of NAM treatment in a number of disease models are due not to PARP-1 inhibition as is commonly assumed, but to upregulation of NAD salvage. / Ph. D.
18

Profil du transcriptome des cellules embryonnaires dérivées de souris mutantes pour les gènes codant les protéines Werner et/ou Poly(ADP-ribose) polymérase-1 /

Deschênes, François. January 2005 (has links)
Thèse (M.Sc.)--Université Laval, 2005. / Bibliogr.: f. 75-90. Publié aussi en version électronique.
19

Protéolyse de la poly(ADP-ribose) polymérase par les protéases apoptotiques /

D'Amours, Damien. January 1997 (has links)
Thèse (M.Sc.) -- Université Laval, 1997. / Bibliogr.: f. 128-151. Publié aussi en version électronique.
20

Rôle de la poly(ADP-ribose) polymérase dans l'apoptose induite par les dommages à l'ADN et dans le contrôle du cycle cellulaire /

Halappanavar, Sabina S. January 2003 (has links)
Thèse (Ph. D.)--Université Laval, 2003. / Bibliogr. Publié aussi en version électronique.

Page generated in 0.0288 seconds