• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur l'analyse multiéchelle du changement de morphologie du PET sous l'effet de la température ou des sollicitations mécaniques / Multi-scale analysis of the morphological changes of the PET under the effect of temperature or mechanical stress

Gong, Yang Hao 06 June 2018 (has links)
Dans ce travail de thèse, nous nous sommes intéressés à la simulation de l’évolution de la microstructure d’un polymère. Plus précisément, nous avons étudié le changement de la morphologie du polyéthylène téréphthalate (PET) sous l’effet de différents mécanismes. Ces simulations sont réalisées par la méthode des champs de phase. Il s’agit d’une méthode basée sur l’équation de Cahn-Hilliard ou l’équation de Ginzburg-Landau. Elle utilise un paramètre d’ordre pour décrire l’état du matériau, des variables thermodynamiques et cinématiques. Ainsi on peut décrire l’évolution d’une microstructure sans suivre l’interface et ainsi reproduire l’évolution de la structure cristalline sphérolitique qui apparait lors d’une cristallisation induite par la température. Dans le cadre d’un changement de morphologie induit par la température, le calcul par champ de phase a été simulé par la méthode de différences finies et la méthode d’éléments finis. Le coefficient cinétique a été identifié à partir de données expérimentales de la littérature. En introduisant un modèle du champ de phases multiples (the MPF model) on a aussi simulé l’évolution de plusieurs sphérolites et gérer la jonction lorsque deux sphérolites se rencontrent. La croissance et la jonction des sphérolite a été modélisée par la méthode d’éléments finis : elle reproduit parfaitement l’évolution expérimentale de cristallisation isotherme d’un polymère. En comparant ces résultats avec le modèle macroscopique d’Avrami, une évaluation de la constante d'Avrami, K(T), a été discutée en fonction des fluctuations des conditions initiales (positions et taille des germes).Dans le cadre de la cristallisation induite par la déformation mécanique, nous avons couplé le champ de phase aux équations de la mécanique pour un comportement viscoélastique différent pour chaque phase. L’influence, sur la cristallisation et l’orientation, de la déformation, de la vitesse de sollicitation, du contraste entre les phases sont étudiées et comparées qualitativement aux observations expérimentales. Il s’agit d’une étude préliminaire qui devra être poursuivie et affinée afin de prédire une morphologie plus réaliste / In this thesis work, we are interested in simulating the evolution of the microstructure of a polymer. In particular, we have studied in the morphology change of polyethylene terephthalate (PET) under different mechanisms. These simulations carried out by the phase field simulation. This method based on the Cahn-Hilliard equation or the Ginzburg-Landau equation. It uses an order parameter to describe the state of material, thermodynamic and kinetic variables. Thus we can describe the microstructure evolution without tracking the interface (which would require complex remeshing) and reproduce the evolution of the crystalline structure within the polymers, for example the growth of spherulites which appear during crystallization induced by temperature. Within the scope the morphology changing by the temperature, the evolution of phase field simulation is performed by the finite difference method and the finite element method. The kinetic coefficient is adjusted in order to fit the experiment data in of the literature. We introduce the multiphase field model (the MPF model) in order to simulate the evolution of several spherulites and to describe the junction of spherulites. The growth and junction of spherulites have been modeled by the finite element method and nicely reproduced in comparing the experimental evolution of isothermal crystallization of a polymer. Comparing these results with the Avrami macroscopic model, an evaluation of the Avrami constant, K (T), was discussed according to the fluctuations of the initial conditions (positions and size of the germs).In the following part, we study the crystallization induced by mechanical deformation. We are interested in the viscoelastic model to simulate the induced crystallization of PET in plane stress. The phase field model coupled to mechanics will be presented. Different viscoelastic behaviors have been considered for each phase. The influence on crystallization and orientation of the deformation, the stress velocity and the contrast between the phases are studied and compared qualitatively with the experimental observations. This is a preliminary study that will have to be continued in order to predict a more realistic morphology

Page generated in 0.2835 seconds