• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of arginine derivatives and oligopeptides on the physical properties of model membranes

Verbeek, Sarah Félice 10 March 2020 (has links)
No description available.
2

Hyaluronanové mikro- a nanočástice / Hyaluronan micro- and nanoparticles

Mourycová, Jana January 2013 (has links)
The aim of this thesis was to prepare hyaluronic acid micro- and nanoparticles based on electrostatic interactions with oppositely charged molecules. Following parameters were monitored: correlation function behavior, the particle size and zeta potential value. At the beginning, it was necessary to study the behavior of hyaluronan in solution by dynamic light scattering measurement. Micro- and nanoparticles were prepared by mixing different volume ratios of negatively charged hyaluronan and positively charged polyarginine or cetyltrimethylammonium bromide. Micro- and nanoparticles were prepared in aqueous solution as well as in 0,15 M sodium chloride solution (physiological solution). In the case of the hyaluronan solution a polydisperse character of hyaluronan was detected. It was found that the dissolution of hyaluronan in the physiological solution gives us the smaller particle size in opposite to particle size obtained from the same concentrations of hyaluronan dissolved in water. Furthermore, it was found that systems composed of hyaluronan and polyarginine create particle size of about 100 nm. Whereas systems consisting of cetyltrimethylaminoum bromide and hyaluronan form larger particles, in units of hundreds of nanometers, the particle size in physiological solution were smaller than the same systems dissolved in aqueous solution.

Page generated in 0.0585 seconds