• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Controlled release and targeted drug delivery using polyelectrolyte microcapsules

Deo, Devendra Inder January 2014 (has links)
Polyelectrolyte microcapsules were first established in 1998 as a potential drug delivery vehicle. Despite being well-established, microcapsules have not yet been thoroughly considered as a viable means of targeted drug delivery. This is largely due to the fact that microcapsules are inherently prone to unspecific binding to cells and proteins. Targeted delivery of drugs to specific diseased sites in the body is an area of research that has attracted many studies, particularly in drug deliveries that utilise microparticles. By achieving targeted delivery of a drug, one can increase the efficacy of the treatment, thus, reducing unwanted side effects. This thesis investigates methods which can modify these microcapsules in order to fine tune the release of the encapsulated drug as well as site-specific delivery of these vesicles i.e. obtain spatiotemporal control. To this end, biodegradable microcapsules of varying constituents are manufactured and their biodegradability is indirectly measured through quantification of the release of an encapsulated fluorescent protein (Rhodamine B-BSA). Fluorometry analysis of the supernatants of these microcapsule suspensions indicated that microcapsules synthesised from poly-L-arginine and poly-L-glutamic acid have the ability to encapsulate bovine serum albumin (BSA) with a high encapsulation efficiency (79.7%). Furthermore, they are able to produce a sustained release of BSA over a period of 5 Days. To complement this controlled-release study, an investigation into self-degradable microcapsules was undertaken. To achieve this, proteinase was encapsulated in both biodegradable and non-biodegradable microcapsules of different thickness. Analysis of the protein release over a period of 24 hours revealed that the release profiles of these microcapsules can be successfully controlled. Biodegradable microcapsules released 87% more protein than their non-biodegradable counterpart after 2 hours of incubation in deionised water. This provides conclusive evidence that the biodegradable microcapsules were, indeed, self-degradable. The latter part of this thesis focuses on achieving specific and exclusive targeted delivery using polyelectrolyte microcapsules, with respect to protein substrates. This is accomplished by creating an antibody-functionalised poly(ethylene glycol) (PEG) assembly within the microcapsule structure. Site-specific adsorption of these microcapsules is tested using protein micropatterns. Results obtained from adsorption assays using anti-collagen type IV-functionalised microcapsules show a 600-fold increase in binding to collagen type IV islands, compared to control proteins (fibronectin and BSA). This proves that significant adsorption was achieved on the target protein, with unspecific adsorptions being heavily suppressed on control proteins. Furthermore, similar results were found when microcapsules were functionalised with anti-fibronectin and exposed to fibronectin, highlighting the versatility of this type of biofunctionalisation.
2

Intelligent Microcontainers : Fabrication, Characterization And Tunable Release Properties For Drug Delivery

Anandhakumar, S 07 1900 (has links) (PDF)
Polyelectrolyte capsules fabricated by layer-by-layer (LbL) technique are introduced as a simple and efficient carrier system for spontaneous deposition of proteins and low molecular water soluble drug. The objective of the work was to investigate the applicability of polyelectrolyte capsules as vehicles for sustained or controlled delivery of drugs. Two different polymeric systems composed of weak and strong polyelectrolytes were chosen to study the loading and release behavior in order to meet the requirements of biomedical applications. In the first system, the wall permeability of weak polyelectrolyte (PAH/PMA) capsules could be readily manipulated from open to closed state by simply varying the pH. The open and closed state of the capsules could be attributed to the charge density variation of weak polyelectrolytes, which induces the capsule wall to undergo a transition from continuous to nanoporous morphology due to phase segregation. Bovine Serum Albumin (BSA) was spontaneously deposited in the hollow capsules and deposition was investigated by CLSM, SEM and AFM techniques. The driving force for spontaneous deposition was electrostatic interaction between the preloaded polystyrene sulfonate (PSS) and BSA. The deposition was uniform and concentration of BSA in the capsule interior reached a few hundred times greater than that of bulk. The amount of loading was significantly influenced by the loading pH, loading concentration and charge density of substance to be loaded at the corresponding pH. The deposition was successful up to the isoelectric point of BSA (pH = 4.8) and there was no loading observed above that, since the deposition is based on electrostatic attraction between PSS and BSA. During the release at physiological pH of 7.4, charge reversal of BSA occurred which induced electrostatic repulsion between PSS and BSA thereby triggering the movement of BSA from the interior to the bulk. Release continued up to 5 h in water and a total release of 63 % was observed which increased to 72 % when release was performed in PBS. Spontaneous deposition of low molecular weight, water soluble drug, ciprofloxacin hydrochloride was performed in the same manner and its release profile was studied. Controlling diffusion of smaller drug molecules is extremely difficult in drug delivery applications. Cross linking of capsule wall components could be used to control the release rates of smaller drug molecules. Cross linking density is dependent on the cross linking time and increases the stiffness of the capsule wall. Release of ciprofloxacin hydrochloride was possible even up to 6 h after cross linking. Antibacterial studies showed that the drug released even after 25 h has a significant effect on the bacterial pathogen E.coli. The second system included weak and strong polyelectrolytes (PAH & DS) and a novel route was employed to fabricate optically addressable capsules that could be laser activated for delivery of drugs. This approach involved a combination of LbL assembly and polyol reduction method wherein PEG was used to reduce AgNO3 to Ag nanoparticles (NPs). The capsules were prepared via LbL assembly of PAH and DS on silica template followed by synthesis of silver NPs in the layers and subsequent dissolution of the silica core. The sulfonate groups of DS present in the polyelectrolyte film act as binding sites for the adsorption of silver ions which are then reduced to silver NPs in the presence of PEG. The size of the silver NPs formed was influenced by the AgNO3 concentration used. At lower concentration, smaller particles of uniform distribution were observed which turned into larger particles of random distribution when the concentration of AgNO3 is increased. Silver NPs embedded capsules ruptured when exposed to laser and was significantly influenced by silver NPs size, their distribution, laser intensity and time of exposure. The synthesis of silver NPs increased the permeability of the capsules to higher molecular weight substances like dextran caused by the defects, discontinuities and pores created on the polymeric network due to the newly formed silver NPs. Encapsulation of FITC-dextran was performed using thermal encapsulation method by exploiting temperature induced shrinking of the capsules at elevated temperatures. During heat treatment the porous morphology transformed into smooth pore free structure which prevented the movement of dextran into the bulk and hence enrichment inside the capsules. The loaded dextran was readily released when exposed to laser and the release could be controlled from linear to burst release in order to meet practical requirements in biomedical applications.

Page generated in 0.0453 seconds