• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 23
  • 8
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 146
  • 26
  • 25
  • 24
  • 23
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Morphological investigation of AFR-PEPA-N imide oligomers and their cured polyimides and the remodification of AFR-PEPA-N to achieve liquid-crystalline behavior

Murphy, Lindsay Adams 15 November 2004 (has links)
The morphological investigation of AFR-PEPA-N and the development of a new polyimide have been established herein. AFR-PEPA-N is an imide oligomer that was created out of the need to attain a high temperature polyimide that is also resistant to hygrothermal and thermooxidative degradation. Previously, AFR700B was implemented in aerospace applications, but it was found to be hygrothermally unstable. It experienced a severe drop in its glass transition temperature and composite blistering. AFR700B was improved upon, by altering the chemical structure of the polyimide. The nadic end-cap was removed and replaced by a more hydrolytically stable end-cap. However this phenylethynyl-terminated end-group could possibly create semi-crystallinity or liquid-crystalline characteristics within the polymer. Previous research suggests further study of the relationships between AFR-PEPA-N's oligomer crystallinity and the properties of phenylethynyl-terminated polyimides. This understanding is valuable in processing AFR-PEPA-N by resin transfer molding (RTM) to obtain its optimum properties. The investigation included the identification of a processing window, temperature overlap between the melting of residual crystals and crosslinking reactions, and liquid crystallinity behavior. These reactions were investigated primarily through birefringence. The residual crystals were found to be innate in the oligomer powder and not created by preliminary thermal processing. Therefore a reasonable processing window was found based upon the reduction of crystal size by appropriate dissolution techniques. Possible nematic liquid-crystalline characteristics were found to be present at 360oC. A new imide oligomer, which was based upon AFR-PEPA-N's original structure, was synthesized. The non-linear, flourinated backbone of AFR-PEPA-N was replaced with a co-linear backbone, pyromellitic dianhydride (PMDA). These modifications were made in hopes to improve upon the network structure by it becoming more regular and resistance to nano-sized defects in the final crosslinked structure. The initial characterization found that the new polyimide, AFR-P3, displayed a cure temperature at 350oC. The degree of cure reaches about 80 to 90 percent complete based upon the consumption of the carbon-triple bond. AFR-P3 did not show signs of liquid-crystalline behavior. However, there will be future work in creating a more rigid-rod, self-assembling oligomer that can attain optimum thermal and mechanical properties.
22

The study of influence of anisotropy in rubbed polyimide thin films on liquid crystal alignment by means of reflection anisotropy spectroscopy

Wang, Sin-ping 15 July 2008 (has links)
Rubbing alignment has been used popularly in display industry. However, the alignment mechanisms of rubbed polymer are still not well understood. The purpose of this study is to investigate the relationship between anisotropy of rubbed polyimide thin film and liquid crystal alignment. In this study, we discuss the effects of surface energy and RAS on the surface roughness and pretilt angle of liquid crystal molecules. RAS is a non-contact optical probing technique developed originally for real-time, in situ monitoring of semiconductor growth . In this technique the normalized difference in reflectivity along two orthogonal directions is measured. Recently, the prospect of using RAS for process control in the fabrication of liquid crystal devices is investigated. On the other hand, we have known that the magnitude of surface energy is related to the strength of molecular bond. We can obtain the variation of surface properties by measuring the difference of surface energy. We found that the RA signal, pretilt angle and surface roughness are increasing with an increase in rubbing strength, but surface energy was decreased..
23

Photocrosslinkable nonlinear optical polymers and directly-patternable polyimide dielectrics

Bell, William Kenneth, III 15 September 2015 (has links)
The development of high-efficiency nonlinear optical (NLO) polymers has opened up many opportunities in the field of electro-optics. However, current NLO polymers do not meet stability requirements for semiconductor integration. In an effort to improve this, we examined the effects of crosslinking following electric field poling. A series of photocrosslinkable polymers bearing side chain chromophores was synthesized, poled and evaluated on the basis of the thermal stability of Second Harmonic Generation. Photoinitiation allowed for control of the onset of curing. Crosslinking was monitored by FTIR and optimal conversion was achieved by applying a slow temperature ramp during exposure. The ultimate stability of the poled polymers was directly related to the number of crosslinking substituents attached to the chromophore pendant group. With two reactive groups per chromophore significant SHG was retained at temperatures beyond the polymer Tg. In integrated circuit packaging there is a need for directly-patternable polymers of low dielectric constant. Bridging the gap between the high-value silicon chip and circuit board is a substrate comprising alternating layers of metal conductor and polymer dielectric. PMDA-ODA, an aromatic polyimide, meets many of the requirements for integration and can be patterned using a photobase generator (PBG). Due to absorbance by the PMDA-ODA precursor, this PBG must have activity at visible wavelengths. Several oxime urethanes were synthesized and evaluated as candidate long wavelength PBG. These compounds exhibit clean photochemistry and high visible light sensitivity. Unfortunately, carbamate thermal stability is insufficient for patterning PMDA-ODA. For improved material properties, PMDA-TFMB, a fluorinated polyimide, was also evaluated. Importantly, the polymer precursor is sufficiently transparent to employ thermally-stable near-UV photobases. With photobase, 2.5 micron features were resolved in PMDA-TFMB. An ancillary benefit of this methodology is reduced cure temperature (~200 °C), a traditional drawback of polyimides. This material demonstrates a dielectric constant near 3 and a thermal expansion coefficient (CTE) of approximately 6 ppm/°C in-plane. Through-plane thermal expansion is somewhat problematic, with a CTE of approximately 160 ppm/°C, and will likely require a nanoparticle composite strategy. However, this combination of material and lithographic properties make PMDA-TFMB a promising candidate for this application. / text
24

Water ingression into poly(imide-siloxane)s /

Kaltenecker-Commercon, Joyce Marie, January 1992 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1992. / Vita. Abstract. Includes bibliographical references (leaves 122-130). Also available via the Internet.
25

Glass fibre coatings based on polyimide-silica hybrids for use in epoxy matrix composites

Demirer, Halil January 1998 (has links)
Despite the advantages that composites have over monolithic materials, their use has been restricted by some deficiencies in their properties. The goal of this study was to overcome deficiencies of unidirectional glass fibre epoxy resin composites by coating the fibres with a "tailored" interlayer. Polyimide–silica hybrids, also known as ceramers, based on hydrolysed tetraethoxysilane and a polyamic acid solution mixture were used to coat glass fibres for epoxy composites. The silica part of these hybrids appears to be present either as dispersed discrete particles or as continuous nano-sized domains trapped within the polyimide matrix. The structure of hybrids determines the final properties. In this study both types of morphologies for the interlayers were utilised to obtain different mechanical, thermal and thermomechanical properties.
26

Development of a Multi-User Polyimide-MEMS Fabrication Process and its Application to MicroHotplates

Lizardo, Ernesto B. 08 May 2013 (has links)
Micro-electro-mechanical systems (MEMS) became possible thanks to the silicon based technology used to fabricate integrated circuits. Originally, MEMS fabrication was limited to silicon based techniques and materials, but the expansion of MEMS applications brought the need of a wider catalog of materials, including polymers, now being used to fabricate MEMS. Polyimide is a very attractive polymer for MEMS fabrication due to its high temperature stability compared to other polymers, low coefficient of thermal expansion, low film stress and low cost. The goal of this thesis is to expand the Polyimide usage as structural material for MEMS by the development of a multi-user fabrication process for the integration of this polymer along with multiple metal layers on a silicon substrate. The process also integrates amorphous silicon as sacrificial layer to create free-standing structures. Dry etching is used to release the devices and avoid stiction phenomena. The developed process is used to fabricate platforms for micro-hotplate gas sensors. The fabrication steps for the platforms are described in detail, explaining the process specifics and capabilities. An initial testing of the micro-hotplate is presented. As the process was also used as educational tool, some designs made by students and fabricated with the Polyimide-MEMS process are also presented.
27

Natural Gas Sweetening by Ultra-Microporous Polyimides Membranes

Alghunaimi, Fahd 05 1900 (has links)
Most natural gas fields in Saudi Arabia contain around 10 mol.% carbon dioxide. The present technology to remove carbon dioxide is performed by chemical absorption, which has many drawbacks. Alternatively, membrane-based gas separation technology has attracted great interest in recent years due to: (i) simple modular design, (ii) potential cost effectiveness, (iii) ease of scale-up, and (iv) environmental friendliness. The state-of-the-art membrane materials for natural gas sweetening are glassy cellulose acetate and polyimide, which were introduced in the 1980s. In the near future, the kingdom is planning to boost its production of natural gas for power generation and increase the feedstock for new petrochemical plants. Therefore, the kingdom and worldwide market has an urgent need for better membrane materials to remove carbon dioxide from raw natural gas. The focus of this dissertation was to design new polyimide membrane materials for CO2/CH4 separation exhibiting high permeability and high selectivity relative to the standard commercial materials tested under realistic mixed-gas feed conditions. Furthermore, this study provided a fundamental understanding of structure/gas transport property relationships of triptycene-based PIM-polyimides. Optimally designed intrinsically microporous polyimide (PIM-PIs) membranes in this work exhibited drastically increased CO2/CH4 selectivities of up to ~75. In addition, a novel triptycene-based hydroxyl-containing polyimide (TDA1-APAF) showed 5-fold higher permeabilities over benchmark commercial materials such as cellulose acetate. Furthermore, this polyimide had a N2/CH4 selectivity of 2.3, thereby making it possible to simultaneously treat CO2- and N2-contaminated natural gas. Also, TDA1-APAF showed a CO2 permeability of 21 Barrer under binary 1:1 CO2/CH4 mixed-gas feed with a selectivity of 72 at a partial CO2 pressure of 10 bar which are significantly better than cellulose triacetate. These results suggest that TDA1-APAF polyimide is an excellent candidate membrane material for removal of CO2 and N2 from natural gas. Moreover, based on the collected data for CO2/CH4 mixed-gas experiments from this work and previously published reports, a new mixed-gas 2017 CO2/CH4 permeability/selectivity upper bound curve was initiated to reflect the actual performance including plasticization phenomena at high feed pressure and 10 bar CO2 partial pressure to simulate the real conditions of the wellhead pressure.
28

Process Model and Sensor Based Optimization of Polyimide Prepreg Compaction During Composite Cure

Magato, James 28 August 2018 (has links)
No description available.
29

Polyimide Microstructures From Powdered Precursors: Phenomenological and Parametric Studies on Particle Inflation

Cano, Camilo I. 23 September 2005 (has links)
No description available.
30

Effects of Nanoparticle and Matrix Interface on Nanocomposite Properties

Miller, Sandi G. 26 August 2008 (has links)
No description available.

Page generated in 0.0212 seconds