Spelling suggestions: "subject:"copolymer 1atrix composite (PMC)"" "subject:"copolymer 1atrix eomposite (PMC)""
1 |
Material Characterization and Life Prediction of a Carbon Fiber/Thermoplastic Matrix Composite for Use in Non-Bonded Flexible RisersRussell, Blair Edward 05 January 2001 (has links)
In the effort to improve oil production riser performance, new materials are being studied. In the present case, a Polymer Matrix Composite (PMC) is being considered as a replacement for carbon steel in flexible risers manufactured by Wellstream Inc., Panama City, Florida. The Materials Response Group (MRG) at Virginia Tech had the primary responsibility to develop the models for long-term behavior, especially remaining strength and life. The MRG is also responsible for the characterization of the material system with a focus on the effects of time, temperature, and environmental exposure. The present work is part of this effort. The motivation to use a composite material in a non-bonded flexible riser for use in the offshore oil industry is put forth. The requirements for such a material are detailed. Strength analysis and modeling methods are presented with experimental data. The effect of matrix crystallinity on composite mechanical properties is shown. A new method for investigating matrix behavior at elevated temperatures developed. A remaining strength life prediction methodology is recalled and applied to the case of combined fatigue and rupture loading. / Master of Science
|
2 |
Three-Dimensional Graphene Foam Reinforced Epoxy CompositesEmbrey, Leslie 27 March 2017 (has links)
Three-dimensional graphene foam (3D GrF) is an interconnected, porous structure of graphene sheets with excellent mechanical, electrical and thermal properties, making it a candidate reinforcement for polymer matrices. GrF’s 3D structure eliminates nanoparticle agglomeration and provides seamless pathways for electron travel. The objective of this work is to fabricate low density GrF reinforced epoxy composites with superior mechanical and electrical properties and study the underlying deformation mechanisms. Dip coating and mold casting fabrication methods are employed in order to tailor the microstructure and properties. The composite’s microstructure revealed good interfacial interaction. By adding mere 0.63 wt.% GrF, flexural strength was improved by 56%. The addition of 2 wt.% GrF showed a surge in glass transition temperature (56oC), improvement in damping behavior (150%), and electrical conductivity 11 orders of magnitude higher than pure epoxy. Dip coated and mold casted composites showed a gauge factor of ~2.4 indicating electromechanically robust composite materials.
|
Page generated in 0.0609 seconds