• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Crosslinking and network formation in a model polymeric system

Seymour, J. E. January 1987 (has links)
No description available.
2

The lithographic behaviour and the mechanisms of radiation-induced crosslinking and main-chain scission of chlorinated polymethylstyrenes

Matsubayashi, Yoshiaki January 1989 (has links)
No description available.
3

Preventing Thermal Degradation of Pvc Insulation by Mixtures of Cross-Linking Agents and Antioxidants

Kim, Taehwan 05 1900 (has links)
Poly(vinyl chloride)(PVC) wire and cable insulation has poor thermal stability, causing the plasticizer to separate from the PVC chain and produce an oily residue, lowering the tensile elongation at break and thus increasing brittleness. We have added 4 wt.% of three different types of cross-linking agents and antioxidants, as well as mixtures of both, to improve the thermal stability of the plasticizer and tensile properties of PVC after thermal exposure. We performed tensile tests, tribological tests, profilometry, scanning electron microscopy(SEM) and water absorption determination before and after thermal exposure at 136 ℃ for 1 week. After adding the agents, elongation at break increased by 10 to 20 % while the wear rate and water absorption were lower than for the control sample. Less voids are seen in the SEM images after adding these two kinds of agents. The thermal resistance of the PVC cable insulation is best enhanced by combinations of cross-linking agents and antioxidants.

Page generated in 0.0827 seconds