Spelling suggestions: "subject:"polymerfluten"" "subject:"bilderfluten""
1 |
Improving Oil Recovery (IOR) with Polymer Flooding in a Heavy-Oil River-Channel Sandstone ReservoirLu, Hongjiang 13 July 2009 (has links) (PDF)
Most of the old oil fields in China have reached high water cut stage, in order to meet the booming energy demanding, oil production rate must be kept in the near future with corresponding IOR (Improving Oil Recovery) methods. Z106 oilfield lies in Shengli Oilfields Area at the Yellow River delta. It was put into development in 1988. Since the oil belongs to heavy oil, the oil-water mobility ratio is so unfavourable that water cut increases very quickly. Especially for reservoir Ng21, the sand rock is sediment from river channel, the permeability heterogeneity and heavy oil properties together lead to extremely poor water flooding efficiency. In order to improve the oil recovery, IOR methods are needed urgently. Considering all practical situations for this reservoir and present technique level, polymer flooding method has been selected as an IOR test with numerical simulation. For polymer flooding, since polymer resolution has the capability of enlarging water viscosity, it controls the mobility of water phase and at the same time improves the driving efficiency. During polymer flooding simulation, many factors must be taken into account for the construction of mathematical model, such as inaccessible pore volume, polymer shear thinning effect, polymer adsorption, relative permeability reduction factors, etc. All simulations were done with black oil model with polymer option in ECLIPSE. Simulation results for a theoretical river channel reservoir with serious permeability heterogeneity and heavy oil, and simulation results for practical reservoir Ng21, both have shown that polymer flooding is a feasible method for IOR. For reservoir Ng21, with polymer slug size of 0.235 PV, polymer concentration at 1.5 kg/m3, the final oil recovery after polymer flooding could reach 12.8%, the enhanced oil recovery is about 5%. If only the developable oil reserve being taken into account, the final oil recovery is about 34%, and enhanced oil recovery from polymer flooding is more than 12%. For such heavy oil river channel reservoir to reach such a final oil recovery, it could be concluded as a great success. Since there are still many such oil reservoirs in Shengli Oilfields Area, polymer flooding will be of great importance for improving oil recovery in this area in the near future.
|
2 |
Improving Oil Recovery (IOR) with Polymer Flooding in a Heavy-Oil River-Channel Sandstone ReservoirLu, Hongjiang 06 April 2004 (has links)
Most of the old oil fields in China have reached high water cut stage, in order to meet the booming energy demanding, oil production rate must be kept in the near future with corresponding IOR (Improving Oil Recovery) methods. Z106 oilfield lies in Shengli Oilfields Area at the Yellow River delta. It was put into development in 1988. Since the oil belongs to heavy oil, the oil-water mobility ratio is so unfavourable that water cut increases very quickly. Especially for reservoir Ng21, the sand rock is sediment from river channel, the permeability heterogeneity and heavy oil properties together lead to extremely poor water flooding efficiency. In order to improve the oil recovery, IOR methods are needed urgently. Considering all practical situations for this reservoir and present technique level, polymer flooding method has been selected as an IOR test with numerical simulation. For polymer flooding, since polymer resolution has the capability of enlarging water viscosity, it controls the mobility of water phase and at the same time improves the driving efficiency. During polymer flooding simulation, many factors must be taken into account for the construction of mathematical model, such as inaccessible pore volume, polymer shear thinning effect, polymer adsorption, relative permeability reduction factors, etc. All simulations were done with black oil model with polymer option in ECLIPSE. Simulation results for a theoretical river channel reservoir with serious permeability heterogeneity and heavy oil, and simulation results for practical reservoir Ng21, both have shown that polymer flooding is a feasible method for IOR. For reservoir Ng21, with polymer slug size of 0.235 PV, polymer concentration at 1.5 kg/m3, the final oil recovery after polymer flooding could reach 12.8%, the enhanced oil recovery is about 5%. If only the developable oil reserve being taken into account, the final oil recovery is about 34%, and enhanced oil recovery from polymer flooding is more than 12%. For such heavy oil river channel reservoir to reach such a final oil recovery, it could be concluded as a great success. Since there are still many such oil reservoirs in Shengli Oilfields Area, polymer flooding will be of great importance for improving oil recovery in this area in the near future.
|
3 |
Experimental study of surfactant-aided enhanced oil recovery in carbonate rockKühne, Jonathan 16 August 2024 (has links)
The application of surfactants and polymers in carbonate reservoirs has a high potential with emerging technology of the manufacture of these chemicals. Tertiary or enhanced oil recovery with chemicals (CEOR) will become more relevant with decreasing new exploration of oil deposits and high remaining oil saturations in huge carbonate oil reservoirs. However, in several oil deposits, high reservoir brine salinity and moderate to high reservoir temperature are encountered. Under such conditions, many chemicals will be insoluble or degrade fast. A selection of commercial and research surfactants and polymers has been investigated for their application under brine salinity of up to 18 percent by weight with significant hardness and a moderate reservoir temperature of 70 °C. Chemical systems were tested towards outcrop limestone rock samples and calcite platelets in combination with a crude oil, which was modified by different organic acids regarding its wetting potential. Wettability alteration from preferentially oil-wet core plugs was pursued with ethoxylated tertiary amines and quaternary ammonium compounds. The main mechanism of wettability alteration towards more water-wet was proposed as extraction of carboxylate anions from the oil phase and the solid samples into aqueous micelles. Thus, high surfactant concentrations would result in improved recovery. From screening of different surfactant combinations in tertiary core flooding, one promising system of an alkyl ether sulfate and hexadecyltrimethylammonium combined with a terpolymer (TP) from acrylic acid, ATBS and NVP is proposed for the examined conditions. Low to moderate adsorption of the single surfactants and their combination as well as a favorable, stabilized phase behavior when combined with the polymer emphasize the applicability of the system. However, long term stability can be an issue with respect to the sulfate surfactant degradation at 70 °C. Analysis of mixed ionic surfactant systems after adsorption testing has been successfully pursued with a combined TC/TNb-determination.
|
Page generated in 0.0322 seconds