• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 13
  • 13
  • 13
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The morphology of crystalline polymers.

Blais, Pierre Joseph Jacques Bruno. January 1966 (has links)
No description available.
2

The effect of interfacial energetics on the physical properties of silica-polydimethyl siloxane composites.

Chahal, Ramlal Singh. January 1968 (has links)
No description available.
3

The effect of interfacial energetics on the physical properties of silica-polydimethyl siloxane composites.

Chahal, Ramlal Singh. January 1968 (has links)
No description available.
4

The morphology of crystalline polymers.

Blais, Pierre Joseph Jacques Bruno. January 1966 (has links)
No description available.
5

Electron radiation of aqueous methyl cellulose solutions

Hillend, W. Jack 01 January 1963 (has links)
No description available.
6

The solid state polymerization of hydrated calcium acrylate and hydrated barium methacrylate.

Costaschuk, Fred Michael. January 1970 (has links)
No description available.
7

The solid state polymerization of hydrated calcium acrylate and hydrated barium methacrylate.

Costaschuk, Fred Michael. January 1970 (has links)
No description available.
8

Silver ion and solvent effects on polystyrene photochemistry

Oesterle, Matthew John 08 1900 (has links)
No description available.
9

Fundamental experiments on the response of solutions, polymers, and modified polymeric materials to electromagnetic radiation

Dallas, George 28 July 2008 (has links)
This dissertation is divided into two sections. In the first section dielectric and magnetic properties were analyzed for a series of materials: bisphenol A solutions, a poly(amideimide), and polymers filled with either carbon black, iron particles, or aluminum flake. The second section deals with the influence of volatiles and low temperature aging on the dynamic mechanical and dielectric properties of a poly(amide-imide). In the first investigation, solutions of bisphenol A in tetrahydrofuran (THF) or diglycidylether of bisphenol A (DGEBA) in either toluene or tetrahydrofuran were used to identify the influence of chemistry, solvent, and concentration (0 - 2.6M) on dielectric loss (ɛ") and storage (ɛ') at (2.45 GHz). A number of solutions were examined as a function of frequency and temperature to obtain a mechanistic explanation for the single frequency data. The results showed the relaxation time shifting to higher frequencies with increased temperature and shifting to lower frequencies after a critical concentration. A polymer derived from bisphenol A and the diglycidylether of bisphenol A was sandwiched between two microwave inactive quartz plates to show selective heating of a 0.002" film. The poly(amide-imide's) dielectric storage and loss values (ɛ', ɛ") were examined as a function of temperature. The metal filled systems showed nonlinear behavior for dielectric loss (ɛ"), magnetic loss (µ"), and normalized magnetization (Gauss), which were explained by a percolation model. A critical volume fraction (Φ<sub>C</sub>) was identified in the 0.15 - 0.25 volume fraction range. Scaling of dielectric and magnetic properties above Φ<sub>C</sub> was 1.2 for aluminum flake, 1.5 for iron, and 5 for carbon black. The development of structure that occurred with increased filler content was monitored by scanning electron microscopy (SEM) and showed qualitative agreement with percolation behavior. At low volume fractions, there were individual particles, then clusters, then veins of material that extended many particle lengths. The second part of this dissertation dealt with the influence of volatiles on the dynamic mechanical and dielectric values of a poly({amide-imide). Experiments were conducted in both the temperature and time domains. These data were complemented by thermogravimetry (TG), thermogravimetry-mass spectrometry (TG-MS), and thermomechanical analysis (TMA). The isothermal desorption of volatiles (150 - 165°C) could be monitored by either mechanical, dielectric, or gravimetric techniques. The mechanical experiments revealed two peaks for water: one a low temperature peak (-90 - -50°C) and the other at (100 - 190°C). The dielectric analysis revealed two peaks for as received poly(amide-imide). The first was between -50 to 0°C, the other was between 0 to 50°C. The low power dielectric analysis and volatile desorption behavior were combined to explain the structure that developed after poly(amideimide) spheres were subjected to similar thermal or microwave processing conditions. Thermal processing produced a closed cell structure and a rough surface, while microwave processing produced an open cell structure at a smooth air-surface interface. / Ph. D.
10

Creation and modification of polymeric materials using electron beam radiation

McHerron, Dale C. 14 October 2005 (has links)
This dissertation begins with a review of radiation chemistry and a number of important variables which can influence the chemistry occurring in irradiated polymeric materials. Following the literature review, four different studies involving the electron beam irradiation and subsequent characterization of various polymeric materials are presented. The first study describes a novel process that has been developed for producing crosslinked polymeric microspheres. With this process, it is possible to produce polymeric microspheres in an aqueous media with a solids content as high as 67 vol % by incorporating a trifunctional acrylate into a biliquid foam (known as polyaphrons) and exposing it to electron beam radiation. The second study involves characterizing the radiation response of a relatively new crystallizable polyimide, LARC-CPI, primarily in terms of its thermal properties as determined by differential scanning calorimetry (DSC), with some limited x-ray scattering experiments. The third study illustrates the effects of electron beam radiation on four different glassy polymers that have been physically aged prior to irradiation. It is shown that irradiation reduces the extent of aging present in the material and that this reduction is proportional to the absorbed dose. The last study examines the crosslinking behavior of a polystyrene - poly(vinyl methyl ether) blend as a function of absorbed dose, composition, and phase separation. It is shown that the crosslinking behavior (in terms of the gel fraction produced) is strongly dependent on all three of these factors. Furthermore, the protective nature of the aromatic groups in polystyrene that is typically displayed by this polymer was not observed in this blend system. / Ph. D.

Page generated in 0.1194 seconds