Spelling suggestions: "subject:"folymers material"" "subject:"colymers material""
1 |
Comparison of Functional Porous Organic Polymers (POPs) and Natural Material Zeolite for Nitrogen Removal and Recovery from Synthetic UrineZhang, Yan 19 March 2018 (has links)
Urine comprises around 1% of domestic sewage volume but holds 80% of total nitrogen. Source separation is a sustainable way to wastewater management than traditional way due to low energy cost and preventing certain pollutants into wastewater treatment plants. Currently, removing and recovering nitrogen from source-separated urine has attracted more and more interests. Of them, ion exchange was used for removal and recovery of nitrogen in the form of ammonia from synthetic urine for potential application as a fertilizer in agriculture. No previous research studies were conducted to investigate the removal and recovery of nitrogen from hydrolyzed urine by ion exchange using POPs (porous organic polymers). So this study focused on evaluating the performance of POPs and comparing with clinoptilolite in synthetic hydrolyzed urine in terms of adsorption capacity (isotherm), adsorption rate (kinetics), regeneration rate, and cost. The ammonium removal from hydrolyzed urine using POPs was rapid with a high capacity of 68.03 mg/g than clinoptilolite (15.36 mg/g), and the regeneration efficiency of clinoptilolite and POPs can achieve 91% and 95.3%, respectively based single time use result. Although POPs had the better performance at one time use and multiple times use, it also had high materials cost. Additionally, the capacity of POP was estimated using the integrated ion exchange regeneration process model as 30.24 mg/g and 28.65 mg/g on cycle 10 and cycle 24, respectively. The regeneration efficiency of POPs was predicated as 45.4% and 38.4% in cycle 10 and cycle 24, respectively. The predicted capacity decreased with the number of cycles, but remained at about 55% of virgin POPs after 24 cycles, indicating POPs can maintain good performance after multiple reuses than clinoptilolite.
|
2 |
Navrhování konstrukcí s FRP výztuží / Design of structures with FRP reinforcementMatušíková, Anna January 2012 (has links)
This diploma thesis presents available FRP software for calculating load bearing capacity of the structures reinforced with FRP and compares them between each other. Furthermore theory and algorithm of my own software is presented here. Load bearing capacity of structures which are reinforced with non-metallic reinforcement and loaded by combination of normal force and bending moment can be solved by my programme. Effects of high temperatures on the concrete structures can be included in the calculation. In the second part of the thesis is calculated load-bearing capacity and deflection of the real beam reinforced with FRP reinforcement and load-bearing capacity of member with FRP reinforcement with effect of elevated temperature. This has been done using my software. Comparison of results from hand calculation and laboratory load-bearing testing is done at the end. This laboratory testing was accomplished by Institute of Concrete and Mansory Structures at our faculty.
|
Page generated in 0.0749 seconds