• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 33
  • 33
  • 10
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Crystal Engineering : From Molecule To Crystal Structure Landscape

Dubey, Ritesh 02 1900 (has links) (PDF)
Crystal engineering underlies the essence of natural affiliation between the molecule on the one side and the crystal as a supramolecular assembly on the other. Molecular recognition is the fundamental cause for this efficient transformation and if we consider the crystal as a supramolecular entity then it is not at all difficult to conceive crystallization as an outstanding example of molecular recognition. In general, organic compounds often facilitate closed packed crystal structures as described by A. I. Kitaigorodskii in the form of the close packing principle but based on chemical features, there is still a small window to understand, to rationalize and to fashion new crystal structures. Extending the chemical viewpoint as first proposed by J. M. Robertson, the supramolecular synthon model as a descriptor of collective crystal structures has been invoked that enables one to trail the molecular behaviour from an entropy dominated situation in solution to an enthalpy driven progression in the solid state. After 20 years, the concept of the supramolecular synthon has stood the test of time because of its simplicity and effectiveness towards the implementation in complex crystal structures and has led the scientific community to further handle complex and interesting ideas in structural chemistry and supramolecular synthesis. The complexity of dynamic and progressive behavior of molecules during crystallization may be understood by the analogous argument of protein folding; both these complex phenomena decode the emergence of multiple metastable forms before the final structures are attained. These intermediate kinetically driven species may be high energy polymorphs and pseudopolymorphs of the compound in question or semicompact random globules for proteins. Understanding the role of these species in their respective processes is of critical importance in elucidating mechanisms. As an alternative approach, crystal structure prediction (CSP) is also of fundamental importance in the context of understanding the crystallization process. All energy based computational methods of CSP address this problem by scanning the multi-dimensional energy hypersurface. This is performed by computing lattice energy changes with respect to parameters like unit cell dimensions, space group symmetry and the positional coordinates of atoms in the asymmetric unit. Further, the computational prediction of the crystal structure of an organic compound results in several choices, and it is possible that a collection of some of these when taken together forms a pattern that mimics the course of the crystallization process very much in the manner that structure correlation mimics covalent bond breaking and making. With all these developments, one is truly at the stage today when any experimental or computed crystal structure is just that, a crystal structure of the molecule in question and it is part of a complex and dynamic structural space which may include a part of the supramolecular reaction trajectory for crystallization itself. Accordingly, this thesis emphasizes the importance of kinetic events during crystallization and proposes some strategies to access the inaccessible domains of this structural space of a given compound. I have exploited the supramolecular synthon model to understand the kinetics of the crystallization process and have further extended this understanding towards the isolation of stoichiometric ternary solids. The synthon model also helps one to provide a logical step to explore these remote domains of the complex hyperenergy surface that have collectively been termed as the crystal structure landscape of the compound in question. The precise descriptions of the chapters are mentioned below. Chapter 2 describes fluorosubstitution as a unique chemical probe to explore the high energy crystal structures of benzoic acid in ambient conditions. This landscape exploration of benzoic acid is based on the robust (kinetically favoured) supramolecular homosynthon as well as consistent fluorosubstitution in native compound. This analysis is also supported by synthon based crystal structure prediction which is one of the best ways of monitoring high energy virtual crystal structures. Chapter 3 extends the idea of landscape exploration towards multicomponent systems. The incorporation of an additional compound during crystallization facilitates even complex kinetic environments but using fluorosubstitution as a chemical probe, it again helps to analyse the high energy virtual domains of the given multicomponent system. Similar to chapter 2, the landscape exploration of multicomponent system is also based on the robust (kinetically favoured) supramolecular heterosynthon as well as consistent fluorosubstitution in the native multicomponent system. Chapter 4 emphasizes the importance of synthon modularity as a chemical probe to traverse in the crystal structure landscape of the given multicomponent system. Here, I have quantified the role of the definitive synthon, by using the supramolecular synthon based fragment approach (SBFA), in the emergence of polymorphism in cocrystals. In latter part of this chapter, I utilized this collective kinetic information in order to realize the combinatorial nature of the crystallization process and showed the complex combinatorial synthesis of ternary solids which itself is considered to be an arduous exercise. Chapter 5 discusses the importance of kinetic information which were fetched from the corresponding multicomponent landscapes and were further utilized for combinatorial synthesis of ternary solids. Although the combinatorial idea is well established in solution, this chapter highlights the first experimental evidence of this idea in the solid state and shows preferred amplification of certain supramolecular synthons from corresponding libraries in the supersaturated crystallizing medium. Chapter 6 extends the combinatorial idea of crystallization even further by using highly flexible organic compounds that collectively provide larger structural space during crystallization. Using the delicate kinetic information about the molecular and supramolecular features, this chapter describes the preferential selection of molecular conformation and supramolecular synthons from the supersaturated solution during the molecule→crystal pathway. In summary, the idea of the crystal structure landscape provides an extended interpretation about some of the complex ideas namely, crystal energy landscape and polymorphism in modern crystal engineering. The crystallization of an organic compound often depends upon intrinsic chemical features and accordingly one selects optimized crystallization routes in the corresponding landscape through decisive experimental conditions. As a final note, the idea of the crystal structure landscape enables one to (at least qualitatively) understand the importance of crystallization kinetics which is understandably a difficult task.
32

Organic Fluorine in Crystal Engineering : Consequences on Molecular and Supramolecular Organization

Dikundwar, Amol G January 2013 (has links) (PDF)
The thesis entitled “Organic fluorine in crystal engineering: Consequences on molecular and supramolecular organization” consists of six chapters. The main theme of the thesis is to address the role of substituted fluorine atoms in altering the geometrical and electronic features in organic molecules and its subsequent consequences on crystal packing. The thesis is divided into three parts. Part I deals with compounds that are liquids under ambient conditions, crystal structures of which have been determined by the technique of in situ cryocrystallography. Part II demonstrates the utilization of in situ cryocrystallography to study kinetically trapped metastable crystalline phases that provide information about crystallization pathways. In part III, crystal structures of a series of conformationally flexible molecules are studied to evaluate the consequences of fluorine substitution on the overall molecular conformation. The genesis and stabilization of a particular molecular conformation has been rationalized in terms of variability in intermolecular interactions in the crystalline state. Part I. In situ cryocrystallography: Probing the solid state structures of ambient condition liquids. Chapter 1 discusses the crystal structures of benzoyl chloride and its fluorinated analogs. These compounds have been analysed for the propensity of adoption of Cl···O halogen bonded dimers and catemers. The influence of conformational and electronic effects of sequential fluorination on the periphery of the phenyl ring has been quantified in terms of the most positive electrostatic potential, VS,max (corresponding to σ-hole) on the Cl-atom. It is shown that fluorine also exhibits “amphoteric” nature like other heavier halogens, particularly in presence of electron withdrawing groups. Although almost all the derivatives pack through C–H···O, C–H···F, C–H···Cl, Cl···F, C–H···π and π···π interactions, the compound 2,3,5,6-tetrafluorobenzoyl chloride exhibited a not so commonly observed Cl···O halogen bonded catemer. On the other hand, the proposed Cl···O mediated dimer is not observed in any of the structures due to geometrical constraints in the crystal lattice. Chapter 2 presents the preferences of fluorine to form hydrogen bond (C–H···F) and halogen bonds (X···F; X= Cl, Br, I). Crystal structures of all three isomers of chloro-, bromo-and iodo-fluorobenzene have been probed in order to gain insights into packing interactions preferred by fluorine and other heavier halogens. It has been observed that homo halogen…halogen (Cl···Cl, Br···Br and I···I) contacts prevail in most of the structures with fluorine being associated with the hydrogen atom forming C–H···F hydrogen bond. The competition between homo and hetero halogen bonds (I···I vs I···F) is evident from the packing polymorphism exhibited by 4-iodo fluorobenzene observed under different cooling protocols. The crystal structures of pentafluoro halo (Cl, Br, I) benzenes were also determined in order to explore the propensity of formation of homo halogen bonds over hetero halogen bonds. Different dimeric and catemeric motifs based on X···F and F···F interactions were observed in these structures. Chapter 3 focuses on the effect of different cooling protocols in generating newer polymorphs of a given liquid. The third polymorph (C2/c, Z'=6) of phenylacetylene was obtained by sudden quenching of the liquid filled in capillary from a hot water bath (363 K) to the nitrogen bath (< 77 K). Also, different polymorphs were obtained for both 2¬fluoro phenylacetylene (Pna21, Z'=1) and 3-fluoro phenylacetylene (P21/c, Z'=3) when crystallized by sudden quenching in contrast to the generally followed method of slow cooling which results in isostructural forms (P21, Z'=1). The rationale for these kinetically stable “arrested” crystalline configurations is provided in part II of the thesis. Part II. Tracing crystallization pathways via kinetically captured metastable forms. Chapter 4 explains the utilization of the new approach of sudden quenching of liquids (detailed in chapter 3) to obtain kinetically stable (metastable) crystalline phases that appear to be closer to the unstructured liquids. Six different examples namely, phenylacetylene, 2-fluorophenylacetylene, 3-fluorophenylacetylene, 4-fluorobenzoyl chloride, 3-chloro fluorobenzene and ethyl chloroformate are discussed in this context. In each case, different polymorphs were obtained when the liquid was cooled slowly (100 K/h) and when quenched sharply in liquid nitrogen. The relationship between these metastable forms and the stable forms (obtained by slow cooling) combined with the mechanistic details of growth of stable forms from metastable forms provides clues about the crystallization pathways. Part III. Conformational analysis in the solid state: Counterbalance of intermolecular interactions with molecular and crystallographic symmetries. Chapter 5 describes the crystal structures of a series of conformationally flexible molecules namely, acetylene and diacetylene spaced aryl biscarbonates and biscarbamates. While most of the molecules adopt commonly anticipated anti (transoid) conformation, some adopt unusual cisoid and gauche conformations. It is shown that the unusually twisted conformation of one of the compounds [but-2-yne-bis(2,3,4,5,6¬pentafluorocarbonate)] is stabilized mainly by the extraordinarily short C–H···F intermolecular hydrogen bond. The strength of this rather short C–H···F hydrogen bond has been authenticated by combined single crystal neutron diffraction and X-ray charge density analysis. It has also been shown that the equi-volume relationship of H-and F-atoms (H/F isosterism) can be explored to access various possible conformers of a diacetylene spaced aryl biscarbonate. While biscarbonates show variety of molecular conformations due to absence of robust intermolecular interactions, all the biscarbamates adopt anti conformation where the molecules are linked with antiparallel chains formed with N–H···O=C hydrogen bonds. Chapter 6 presents a unique example where the commonly encountered crystallographic terms namely, high Z' structure, polymorphism, phase transformation, disorder, isosterism and isostructuralism are witnessed in a single molecular species (parent compound benzoylcarvacryl thiourea and its fluorine substituted analogs). The origin of all these phenomenon has been attributed to the propensity of formation of a planar molecular dimeric chain mediated via N–H···O [R2 (12)] and N–H···S [R2 (8)] dimers.
33

Phase Behaviour in Crystalline Solids : Exploring the Structure Guiding Factors Via Polymorphism, Phase Transitions and Charge Density Studies

Thomas, Sajesh P January 2013 (has links) (PDF)
The thesis entitled "Phase Behaviour in Crystalline Solids: Exploring the Structure Guiding Factors via Polymorphism, Phase Transitions and Charge Density Studies" consists of five chapters divided into two parts. A basic introductory section describes the topics relevant to the work and the methods and techniques utilized. Part A contains two chapters that discuss the structural aspects related to polymorphism, solvatomorphism, conformational preferences and phase transitions exhibited by active pharmaceutical ingredients (APIs). It also discusses the structure-property correlations in API crystal forms and the possible utility of second harmonic generation (SHG) for their bulk characterization. Part B has three chapters that discuss experimental and theoretical charge density analyses of intra-and intermolecular interactions that play structure guiding roles in some of the APIs discussed in Part A. The main focus of the present work is to characterize the interaction patterns devoid of strong classical hydrogen bonds. The case studies include multifurcated C - H …O hydrogen bonds, the “carbon bonding” and chalcogen interactions involving Se and S atoms. In addition to charge density studies, in situcryocrystallography and molecular complexation experiments have been employed to examine structural consequences of chalcogen bonding. Further, Appendices 1 and 2 describe phase transition studies on the inorganic mineral kröhnkite and its high temperature phase transitions leading to novel inorganic structural types. Part A: Polymorphism and phase behaviour in Active Pharmaceutical Ingredients (APIs) Chapter 1 discusses case studies of polymorphism, supramolecular preference sand phase transitions exhibited by active pharmaceutical ingredients (APIs). Section 1.1 deals with the polymorphism of an anti-oxidant drug candidate ebselen and its hydroxyl derivative. The potential of organoselenium compounds to form a Se…O chalcogen bonded supramolecular recognition unit (synthon) has been established in these polymorphs and its generality is substantiated with the help of a Cambridge Structural Database (CSD) analysis. Section 1.2 demonstrates the utility of the ‘chalcogen bonded supramolecularsynthon’ in generating molecular complexes of APIs. A series of salts and co-crystals of the amyotrophic lateral sclerosis drug Riluzole have been synthesized in order to evaluate the structure directing role of S…O chalcogen bonded synthon in their crystal structures. Section 1.3adescribes the generation of polymorphs and solvatomorphs of the antidepressant drug candidate fenobamand associated phase transitions. The tautomeric preference in this molecule has been rationalized from the crystal structure analysis and abinitioenergy calculations. Further, section 1.3b utilizes chemical derivatization as a means to experimentally simulate thetautomeric preference and molecular conformations in several derivatives of fenobam and thiofenobam. Section 1.4 describes the issue of solvatomorphism and the generation of the fifth solvatomorph of gallic acid, its structural complexity and temperature induced phase transitions. The ability of solvent water molecules to drive structural diversity, by forming ‘hydration synthons’,is demonstrated in this case. Chapter 2 presents a novel methodology for the detection of polymorphic impurities in APIs based on second harmonic generation (SHG).The SHG based method has been employed to polymorphic mixtures of fenobam, hydrochlorothiazide, pyrazinamide, tolbutamide, curcumin, febuxostat and nimesulide.The conventional methods such as powder X-ray diffraction (profile fitting analysis), FT-IR, Raman spectroscopy and thermal analysesto detect the presence of polymorphic impuritiesin bulk API samples are employed on the mixtures of these API samples and the impurity detection limits are compared with the proposed SHG methodology. The APIs used in these case studies were screened for their SHG efficiency using quantum chemical calculations of hyperpolarizability and HOMO-LUMO charge redistribution behaviour. Further, a correlation with the crystal symmetry, relative packing arrangement of molecules and the observed SHG efficiency have been discussed in of some of these cases. Part B: Exploring the nature and structural consequences of nonbonding interactions in molecular crystals Chapter 3 discusses the electron density features of quasi-trifurcated CH…Cl/CH…O interaction motifs leading to ‘carbon bonding’ and a trifurcated CH…O hydrogen bond motif. Section 3.1 describes the experimental and theoretical charge density analyses of quasi-trifurcated CH…Cl and CH…O motifsand investigates the existence of “carbon bonding” in solid state. The experimental charge density evidence for “carbon bonding” have been analyzed in cases of fenobam and dimethylamine: 4-hydroxybenzoic acid complex. The existence of this unconventional interaction, which roughly mimics the transition state geometry of SN2 (bimolecular nucleophilic substitution) reaction, is further established by a CSD analysis. Section 3.2 describes the experimental and theoretical charge density analyses of ferulic acid and compares the topological features associated with a trifurcated CH…O hydrogen bond motif, with corresponding strong classical OH…O hydrogen bonds. The study demonstrates the “Gulliver effect” of weak interactions in charge density terms. Charge density based interaction energy calculations via EPMM and EML methods have been utilized in this context to evaluate the relative strength of such interactions. Chapter 4 discusses the charge density features of intermolecular chalcogen bonding interactions involving selenium and sulphur atoms.Section 4.1 describes the experimental and theoretical charge density analyses of ebselen and its hydroxyl derivative. The charge density characterization of the conserved chalcogen bond synthon (discussed in chapter 1, section 1.1) has been carried out and electronic nature and geometric dependence of Se…O interactions have been explored. The mechanism of drug action of ebselen has been correlated with the experimentally observed charge density distribution around the intramolecular SeC and SeN bonds. Section 4.2 explores the homochalcogen interactions such as S…SandSe…Se in phenol analogues. In situ cryocrystallographic studies on thiophenol, selenophenol and their solid solutions are described. Veggard’s law-like behaviour observed in these solid solutions have been rationalized and the S…S and Se…Sehomochalcogen interactions have been evaluated in these liquid systems which are devoid of any other packing forces such as strong hydrogen bonds. Chapter 5 discusses the conformation locking potential of intramolecular S…O chalcogen bonding in sulfadrugs. Section 5.1 discusses conformation locking in the antibioticdrugsulfamethizole. A two pronged approach has been adopted in the study; a) generation of cocrystals and salts of sulfamethizole for the ‘experimental simulation’ of the molecular conformation, b) evaluation of charge density distribution around the intramolecular S…O interaction region in sulfamethizole. Section 5.2 describes the effect of ‘simple hybridized orbital geometry’ in the formation of intramolecular S…O chalcogen bonding. The experimental charge density analysis of the carbonic anhydrase inhibitor drug acetazolamide has been carried out and the two different intramolecular S…O geometries have been compared in terms of the charge density topology. The analysis highlights the advantage of “orbital geometry” consideration over the conventional distance-angle criteria in assessing nonbonded interactions.

Page generated in 0.0715 seconds