• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solution of St.-Venant's and Almansi-Michell's Problems

Placidi, Luca 24 October 2002 (has links)
We use the semi-inverse method to solve a St. Venant and an Almansi-Michell problem for a prismatic body made of a homogeneous and isotropic elastic material that is stress free in the reference configuration. In the St. Venant problem, only the end faces of the prismatic body are loaded by a set of self-equilibrated forces. In the Almansi-Michell problem self equilibrated surface tractions are also applied on the mantle of the body. The St. Venant problem is also analyzed for the following two cases: (i) the reference configuration is subjected to a hydrostatic pressure, and (ii) stress-strain relations contain terms that are quadratic in displacement gradients. The Signorini method is also used to analyze the St. Venant problem. Both for the St. Venant and the Almansi-Michell problems, the solution of the three dimensional problem is reduced to that of solving a sequence of two dimensional problems. For the St. Venant problem involving a second-order elastic material, the first order deformation is assumed to be an infinitesimal twist. In the solution of the Almansi-Michell problem, surface tractions on the mantle of the cylindrical body are expressed as a polynomial in the axial coordinate. When solving the problem by the semi-inverse method, displacements are also expressed as a polynomial in the axial coordinate. An explicit solution is obtained for a hollow circular cylindrical body with surface tractions on the mantle given by an affine function of the axial coordinate / Master of Science

Page generated in 0.048 seconds