Spelling suggestions: "subject:"polynomialtime algorithms"" "subject:"polynomialtimes algorithms""
1 |
On the separation of complexity classesRegan, K. W. January 1986 (has links)
No description available.
|
2 |
Vlastnosti intervalových booleovských funkcí / Properties of interval Boolean functionsHušek, Radek January 2014 (has links)
Boolean function f is k-interval if - input vector viewed as n-bit number - f is true for and only for inputs from given (at most) k intervals. Recognition of k-interval fuction given its DNF representation is coNP-hard problem. This thesis shows that for DNFs from a given solvable class (class C of DNFs is solvable if we can for any DNF F ∈ C decide F ≡ 1 in polynomial time and C is closed under partial assignment) and fixed k we can decide whether F represents k-interval function in polynomial time. 1
|
3 |
Genetic Network Completion Using Dynamic Programming and Least-Squares Fitting / 動的計画法と最小二乗法を用いた遺伝子ネットワーク補完Nakajima, Natsu 23 January 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第18701号 / 情博第551号 / 新制||情||97(附属図書館) / 31634 / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 阿久津 達也, 教授 山本 章博, 教授 岡部 寿男 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
4 |
K-Separator problem / Problème de k-SéparateurMohamed Sidi, Mohamed Ahmed 04 December 2014 (has links)
Considérons un graphe G = (V,E,w) non orienté dont les sommets sont pondérés et un entier k. Le problème à étudier consiste à la construction des algorithmes afin de déterminer le nombre minimum de nœuds qu’il faut enlever au graphe G pour que toutes les composantes connexes restantes contiennent chacune au plus k-sommets. Ce problème nous l’appelons problème de k-Séparateur et on désigne par k-séparateur le sous-ensemble recherché. Il est une généralisation du Vertex Cover qui correspond au cas k = 1 (nombre minimum de sommets intersectant toutes les arêtes du graphe) / Let G be a vertex-weighted undirected graph. We aim to compute a minimum weight subset of vertices whose removal leads to a graph where the size of each connected component is less than or equal to a given positive number k. If k = 1 we get the classical vertex cover problem. Many formulations are proposed for the problem. The linear relaxations of these formulations are theoretically compared. A polyhedral study is proposed (valid inequalities, facets, separation algorithms). It is shown that the problem can be solved in polynomial time for many special cases including the path, the cycle and the tree cases and also for graphs not containing some special induced sub-graphs. Some (k + 1)-approximation algorithms are also exhibited. Most of the algorithms are implemented and compared. The k-separator problem has many applications. If vertex weights are equal to 1, the size of a minimum k-separator can be used to evaluate the robustness of a graph or a network. Another application consists in partitioning a graph/network into different sub-graphs with respect to different criteria. For example, in the context of social networks, many approaches are proposed to detect communities. By solving a minimum k-separator problem, we get different connected components that may represent communities. The k-separator vertices represent persons making connections between communities. The k-separator problem can then be seen as a special partitioning/clustering graph problem
|
Page generated in 0.0787 seconds