• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 26
  • 24
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 107
  • 39
  • 25
  • 23
  • 22
  • 20
  • 17
  • 15
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Studium účinku modifikace virových částic polyhistidinem na jejich intracelulární lokalizaci a dopravu genů do jádra / Effect of polyhistidine modification of viral particles on their intracellular localization and gene delivery to the nucleus

Číhařová, Barbora January 2021 (has links)
Viral vectors derived from mouse polyomavirus are a convenient tool for studying the targeted delivery of therapeutical agents into the cells and cellular organelles. Vectors derived from mouse polyomavirus face difficulties similar to other nanoparticles, as they often end up trapped inside an endosome where they are subsequently degraded. This diploma explored the potential of vector modifications, which have the potential to make the transport to the nucleus or cytosol more effective. This work had particularly focused on increasing the transduction efficiency by modifying particle's internally localized VP3 capsid protein with covalently bound membrane-penetrating peptides. Primary covalent genetic modification to the VP3 protein was the polyhistidine peptide KH27K. Its potential of improving the transduction effectivity was compared with two other peptide modifications - LAH4 and R8. The results of the transduction test showed that covalently bound R8 peptide had many-fold improved the transport to the nucleus when compared to the unmodified particles. The modification with LAH4 peptide had been regarded more effective only when was associated with the particles non-covalently. In such scenario the transduction efficiency rose 40-times when compared with unmodified particles. Polyhistidine...
92

Role histon deacetylázy 6 v replikačním cyklu myšího polyomaviru / The role of histone deacetylase 6 in murine polyomavirus replication cycle

Vlachová, Štěpánka January 2021 (has links)
The replication cycle of polyomaviruses is, consistently with other viruses, fully dependent on host cells. Not only the cellular replicational and translational mechanisms are important for viruses, but also the virus infection is affected by other cellular proteins. This work is focused on the role of major cytoplasmic deacetylase, histone deacetylase 6 (HDAC6) in replication cycle of murine polyomavirus (MPyV). We showed that the presence of fully functional HDAC6 is essential for successful and productive infection. We found that HDAC6 affects not only early phase, but also late phase of infection. Cells with inhibited, or absent HDAC6 are infected with decreased effectivity and moreover lower amount of infectious viral particles is produced. On the other side, using cells with partially functional HDAC6, either in its deacetylase activity or in ubiquitin-binding activity, leads to increased ability of MPyV to infect those cells. Analysis of levels of early LT antigen and late structural protein VP1 in the infected cells showed, that viral proteins are affected by HDAC6. Our data suggest, that in the replication cycle of MPyV mainly the ubiquitin-binding domain of HDAC6 is required and the role of this domain in protein metabolism and degradation. In the second part of diploma project, we...
93

The Characterization of Avian Polyomavirus, Satellite Tobacco Mosaic Virus, and Bacteriophage CW02 by Means of Cryogenic Electron Microscopy

Shen, Peter S. 03 August 2011 (has links) (PDF)
Viruses are the most abundant biological entity in the biosphere and are known to infect hosts from all domains of life. The aim of my work is to identify conserved and non-conserved features among the capsid structures of related and divergent icosahedral viruses via cryogenic electron microscopy, sequence analysis, molecular modeling, and other techniques. Bird polyomaviruses often cause severe disease in their hosts whereas mammalian polyomaviruses generally do not. Avian polyomavirus is a type of bird polyomavirus with an unusually broad host range compared to the restricted tropism of other polyomaviruses. Although most polyomaviruses have a conserved, rigid capsid protein structure, avian polyomavirus has a flexible capsid shell and a non-conserved C-terminus in its major capsid protein. A β-hairpin motif appears to stabilize other polyomaviruses but is missing in avian polyomavirus. The lack of this structure in avian polyomavirus may account for its capsid flexibility and broad host range. A minor capsid protein unique to bird polyomaviruses may be located on the inner capsid surface. This protein may have a role in the acute disease caused by bird polyomaviruses. The solution-state capsid structure of satellite tobacco mosaic virus was unexpectedly different than the previously solved crystalline structure. The conformational differences were accounted for by a shift of the capsid protein about the icosahedral fivefold axis. Conversely, the RNA core was consistent between solution and crystalline structures. The stable RNA core supports previous observations that the viral genome stabilizes the flexible capsid. Halophage CW02 infects Salinivibrio bacteria in the Great Salt Lake. The three-dimensional structure of CW02 revealed a conserved HK97-like fold that is found in all tailed, double-stranded DNA viruses. The capsid sequence of CW02 shares less than 20% identity with HK97-like viruses, demonstrating that structure is more conserved than sequence. A conserved module of genes places CW02 in the viral T7 supergroup, members of which are found in diverse aquatic environments. No tail structure was observed in reconstructions of CW02, but turret-like densities were found on each icosahedral vertex, which may represent unique adaptations similar to those seen in other extremophilic viruses.
94

Cellular sheddases are induced by Merkel cell polyomavirus small tumour antigen to mediate cell dissociation and invasiveness

Nwogu, N., Boyne, James R., Dobson, S.J., Poterlowicz, Krzysztof, Blair, G.E., Macdonald, A., Mankouri, J., Whitehouse, A. 10 August 2018 (has links)
Yes / Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is recognised as the causative factor in the majority of MCC cases. The MCPyV small tumour antigen (ST) is considered to be the main viral transforming factor, however potential mechanisms linking ST expression to the highly metastatic nature of MCC are yet to be fully elucidated. Metastasis is a complex process, with several discrete steps required for the formation of secondary tumour sites. One essential trait that underpins the ability of cancer cells to metastasise is how they interact with adjoining tumour cells and the surrounding extracellular matrix. Here we demonstrate that MCPyV ST expression disrupts the integrity of cell-cell junctions, thereby enhancing cell dissociation and implicate the cellular sheddases, A disintegrin and metalloproteinase (ADAM) 10 and 17 proteins in this process. Inhibition of ADAM 10 and 17 activity reduced MCPyV ST-induced cell dissociation and motility, attributing their function as critical to the MCPyV-induced metastatic processes. Consistent with these data, we confirm that ADAM 10 and 17 are upregulated in MCPyV-positive primary MCC tumours. These novel findings implicate cellular sheddases as key host cell factors contributing to virus-mediated cellular transformation and metastasis. Notably, ADAM protein expression may be a novel biomarker of MCC prognosis and given the current interest in cellular sheddase inhibitors for cancer therapeutics, it highlights ADAM 10 and 17 activity as a novel opportunity for targeted interventions for disseminated MCC. / In parts by the Medical Research Council (95505126) to AW, Royal Society (UF100419) to JM and Biotechnology and Biological Sciences Research Council (BB/R000352/1) to GEB and AW.
95

Studies on the Molecular Biology of the Mouse Pneumotropic Polyomavirus

Zhang, Shouting January 2003 (has links)
<p>The <i>Murine Pneumotropic Virus </i>(MPtV), in contrast to the other <i>MurinePolyomavirus</i> (MPyV), appears to be non-tumourigenic in its natural host. Instead, MPtV causes acute pneumonia and can serve as a model in studies of polyomavirus-induced disease. In initial experiments, MPtV large T-antigen (LT) was expressed in a heterologous system. LT was characterized with regard to its metabolic stability and cell immortalizing activity and, after purification, to its specific DNA binding. </p><p>The absence of permissive cell culture system for MPtV has hampered its study. We made attempts to widen the host range of the virus by modifying the regulatory and late regions of the genome. The enhancer substitution mutant (KVm1), having a transcriptional enhancer substituted with a corresponding DNA segment from MPyV, was able to replicate in mouse 3T3 cells and form virus particles that were infectious in mice. However, efficient infection of cells in vitro was not achieved with this mutant virus, possibly due to the absence of virus-specific receptors on the cells. The capsid protein substitution mutants, having capsid protein genes of MPyV, for which receptors are present on a variety of cell types, showed also no cytopathic effect, despite an enhanced viral DNA replication and assembly of virus particles. </p><p>MPtV-DNA extracted from virus in lung tissue of infected mice had a heterogeneous enhancer segment. A majority of the DNA molecules had a structure differing from the standard-type. A 220 base-pair insertion at nucleotide position 142 with a concomitant deletion of nucleotides 143 to 148 was a prominent variation. Other genome variants showed complete or partial deletions of the insertion and surrounding sequences in the viral enhancer. In relation to the standard-type, all variant genomes showed differences in the activities of transcriptional promoters and the origin DNA replication. Analysis by DNA reassociation showed that a large number of nucleotide sequences related to the 220 base-pair insert in the MPtV genome were present in mouse and human DNA, but not in <i>Escherichia coli</i> DNA. Together, the data suggest that the 220 base-pair insertion is related to a transposable element of a novel type.</p>
96

Studies on the Molecular Biology of the Mouse Pneumotropic Polyomavirus

Zhang, Shouting January 2003 (has links)
The Murine Pneumotropic Virus (MPtV), in contrast to the other MurinePolyomavirus (MPyV), appears to be non-tumourigenic in its natural host. Instead, MPtV causes acute pneumonia and can serve as a model in studies of polyomavirus-induced disease. In initial experiments, MPtV large T-antigen (LT) was expressed in a heterologous system. LT was characterized with regard to its metabolic stability and cell immortalizing activity and, after purification, to its specific DNA binding. The absence of permissive cell culture system for MPtV has hampered its study. We made attempts to widen the host range of the virus by modifying the regulatory and late regions of the genome. The enhancer substitution mutant (KVm1), having a transcriptional enhancer substituted with a corresponding DNA segment from MPyV, was able to replicate in mouse 3T3 cells and form virus particles that were infectious in mice. However, efficient infection of cells in vitro was not achieved with this mutant virus, possibly due to the absence of virus-specific receptors on the cells. The capsid protein substitution mutants, having capsid protein genes of MPyV, for which receptors are present on a variety of cell types, showed also no cytopathic effect, despite an enhanced viral DNA replication and assembly of virus particles. MPtV-DNA extracted from virus in lung tissue of infected mice had a heterogeneous enhancer segment. A majority of the DNA molecules had a structure differing from the standard-type. A 220 base-pair insertion at nucleotide position 142 with a concomitant deletion of nucleotides 143 to 148 was a prominent variation. Other genome variants showed complete or partial deletions of the insertion and surrounding sequences in the viral enhancer. In relation to the standard-type, all variant genomes showed differences in the activities of transcriptional promoters and the origin DNA replication. Analysis by DNA reassociation showed that a large number of nucleotide sequences related to the 220 base-pair insert in the MPtV genome were present in mouse and human DNA, but not in Escherichia coli DNA. Together, the data suggest that the 220 base-pair insertion is related to a transposable element of a novel type.
97

Processing of Virus-Like Particles

Daniel Lipin Unknown Date (has links)
A virus-like particle (VLP) is a biological nanoparticle. It consists of the protective protein shell of a virus that is devoid of the nucleic acid required for viral replication. VLPs have two key uses: they can act as vaccines by inducing an immune response similar to their native virions, or they can facilitate gene therapy and drug delivery by encapsulating non-viral molecules and efficiently transporting them into cells. Manufacture of VLPs involves cell-based expression of virus-shell protein, with particle assembly and purification following one of two paradigms: (i) in vivo VLP assembly, followed by purification of full particles from cell lysate; (ii) partially assembled protein is recovered from cell lysate and assembled into VLPs in vitro. The flexibility and efficiency of both of these VLP manufacturing paradigms can be improved by first gaining a fundamental understanding of what is happening at key process steps. These improvements will lower the cost of VLP manufacture and enhance the viability of VLP products in the biopharmaceutical marketplace. The research reported here yielded positive outcomes for two key steps of the VLP manufacturing process, using murine polyomavirus VLPs for all experimentation. Firstly, enhanced understanding concerning the capture of virus shell protein in pentamer form (capsomeres) from cell lysate using glutathione-S-transferase (GST) affinity chromatography was obtained. It was discovered that prokaryotic expression of GST-tagged capsomeres yielded soluble aggregates having variable size distribution. Methods were developed to physically and chemically characterise these soluble aggregates, and the mechanism by which they adsorb to the chromatography resin was described using an established mathematical model. Secondly, particle characterisation of whole VLPs isolated from cell lysate was undertaken. Methods utilizing three orthogonal and quantitative techniques were developed to suggest that encapsulation of non-viral molecules (nucleic acids or proteins) during in vivo assembly causes distinct changes to the size distribution of isolated VLPs: transmission electron microscopy (TEM), asymmetrical flow field-flow fractionation with multiple-angle light scattering (AFFFF-MALS) and electrospray differential mobility analysis (ES-DMA). The understanding gained from the research presented in this work enables the enhanced capture of partially assembled virus shell protein from cell lysate, as well as a method to efficiently and cost-effectively analyse VLP solutions for the presence of desirable or undesirable encapsulated material.
98

Processing of Virus-Like Particles

Daniel Lipin Unknown Date (has links)
A virus-like particle (VLP) is a biological nanoparticle. It consists of the protective protein shell of a virus that is devoid of the nucleic acid required for viral replication. VLPs have two key uses: they can act as vaccines by inducing an immune response similar to their native virions, or they can facilitate gene therapy and drug delivery by encapsulating non-viral molecules and efficiently transporting them into cells. Manufacture of VLPs involves cell-based expression of virus-shell protein, with particle assembly and purification following one of two paradigms: (i) in vivo VLP assembly, followed by purification of full particles from cell lysate; (ii) partially assembled protein is recovered from cell lysate and assembled into VLPs in vitro. The flexibility and efficiency of both of these VLP manufacturing paradigms can be improved by first gaining a fundamental understanding of what is happening at key process steps. These improvements will lower the cost of VLP manufacture and enhance the viability of VLP products in the biopharmaceutical marketplace. The research reported here yielded positive outcomes for two key steps of the VLP manufacturing process, using murine polyomavirus VLPs for all experimentation. Firstly, enhanced understanding concerning the capture of virus shell protein in pentamer form (capsomeres) from cell lysate using glutathione-S-transferase (GST) affinity chromatography was obtained. It was discovered that prokaryotic expression of GST-tagged capsomeres yielded soluble aggregates having variable size distribution. Methods were developed to physically and chemically characterise these soluble aggregates, and the mechanism by which they adsorb to the chromatography resin was described using an established mathematical model. Secondly, particle characterisation of whole VLPs isolated from cell lysate was undertaken. Methods utilizing three orthogonal and quantitative techniques were developed to suggest that encapsulation of non-viral molecules (nucleic acids or proteins) during in vivo assembly causes distinct changes to the size distribution of isolated VLPs: transmission electron microscopy (TEM), asymmetrical flow field-flow fractionation with multiple-angle light scattering (AFFFF-MALS) and electrospray differential mobility analysis (ES-DMA). The understanding gained from the research presented in this work enables the enhanced capture of partially assembled virus shell protein from cell lysate, as well as a method to efficiently and cost-effectively analyse VLP solutions for the presence of desirable or undesirable encapsulated material.
99

Molecular mechanism of SV40 large tumor antigen helicase /

Tokonzaba, Etienne. January 2007 (has links)
Thesis (Ph.D. in Pharmacology) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 82-92; 128-134). Online version available via ProQuest Digital Dissertations.
100

BK-polyomavirová infekce u pacientů po kombinované transplantaci ledviny a pankreatu / BK-polyomavirus infection in patients after simultaneous pancreas and kidney transplantation

Mindlová, Martina January 2011 (has links)
Introduction. The aim of the study was to introduce a new BKV PCR protocol in our centre and to verify its accuracy as well as to assess the prevalence, risk factors of BK virus replication, course of BKV infection and therapeutic approaches in simultaneous pancreas and kidney (SPK) recipients in order to design a screening protocol. Methods. The results analysed by both Affigene® and Transplantation Virology, Basel PCR protocols were compared. Thereafter 183 SPK patients were examined to assess the prevalence of BK viremia, viruria and BKVN and to identify the risk factors of BKV replication. The cases of retransplantation after a graft loss due to BKVN were retrospectively described. Results. 100 of results were analysed according to the Affigene ® and Transplantation Virology, Basel PCR protocols with the accordance of 95%, Rho = 0,946, 95% CI: 0.920 - 0.963, P<0,0001, Bland-Altman plot analyses: bias Basel PCR protocol/Affigene® BKV trender: -0,1 (mean) *±1.96 SD: -1,6 - 1,3] for both methods. Point-prevalence was assessed in 183 patients; Viruria found in 17,3 %, viremia in 3.8% of patients. High-level viruria >107 copies/mL detected in 3,7% of patiets, high-level virémia >104 in 1,6% of patients simultaneously with high-level viruria. BKVN was found in 0,5% of patients. Diabetes duration...

Page generated in 0.0573 seconds