Spelling suggestions: "subject:"polypropylene composites"" "subject:"polypropylenes composites""
1 |
Exploration of plastic pallets using various fillers on graphite nanoplatelets/polypropylene compositesLee, Soohyung 26 January 2023 (has links)
In this study, composite system was developed to enhance mechanical properties of plastic pallets. The potential of graphite nanoplatelets (GnP)/PP composites for the application in packaging was scrutinized by examining mechanical properties, thermal properties, flow properties, and morphology as a function of GnP loading and by comparison of two mixing methods: physical melt compounding (PMC) and chemical pretreatment compounding (CPC) processes. Incorporation of the GnP into PP resulted in a significant enhancement in the mechanical strength (tensile, impact, and flexural strength) and thermal decomposition temperature compared to the neat PP specimen. The CPC process clearly shows good exfoliation and better distribution on the PP matrix compared to the PMC method based on morphological evaluation measured by SEM. The impact test at low temperature revealed that the composites made by the CPC process showed 64% higher impact strength than neat PP due to higher even-distribution of GnP molecules into the PP matrix.
We attempted to discover the degree of dispersion of natural fiber (kenaf) and graphite nanoplatelets (GnP) into the polypropylene (PP) polymer matrix and the effect of filler-adding sequence on physical and mechanical properties. Tensile strength of the composites was increased up to 25%. In the case of Young's modulus, composites showed a 56% enhancement compared to the control. However, the impact strength decreased as a result of the increased brittleness when kenaf fiber was added. Another study investigated the effects of hybrid filler systems (graphite nanoplatelets (GnP)/commercially available modified calcium carbonate (mCaCO3) nanoparticles) on mechanical and physical properties of polypropylene nanocomposites with three variables, filler loading amount, the number of compounding processes, and the compounding order of two different fillers. The impact strength of composite samples, containing 1wt% of GnP and mCaCO3 nanoparticles, increased up to 64% compared to neat PP. Among all tested samples, the highest tensile strength was found at 1wt% of mCaCO3 nanoparticles regardless of the presence or absence of GnP addition. There was no significant difference in flexural strength regardless of any nano-filler addition. However, both the flexural modulus and Young's modulus increased significantly when 10wt% of mCaCO3 nanoparticles were added. The number of compounding processes did not affect any strength, and the single compounding process was found to be more effective than the double compounding process. It may be contributed by thermal degradation of polymeric structure by double heat processing. This study can be able to provide a solution for value-added high-end products in various industries such as application in logistics, aerospace or electric automobile, where carbon-based nanomaterials are more affordable. / Doctor of Philosophy / Pallets are the basic structure of a unit load which allows handling and storage efficiency. The advantages of plastic pallets are durability, cleanliness, and performance reliability, However, those are expensive and have lower mechanical properties than that of wood, such as low strength, creeps and deformation. Therefore, hybrid composites were fabricated using various fillers, such as graphite nanoplatelets, kenaf fiber or calcium carbonate on polypropylene matrix to enhance mechanical properties for plastic pallets. In order to fabricate the composites, two methods were utilized and compared: physical melt compounding (PMC) and chemical pretreatment compounding (CPC) processes. Graphite nanoplatelets (GnP) reinforced polypropylene (PP) composites made by both PMC and CPC process showed significance in the mechanical process compared to the neat PP. Moreover, the CPC process showed better dispersion on the PP matrix resulting in higher impact strength in low temperature.
Based on the first chapter, we attempted to focus on reducing weight and sustainability using natural fiber. At the same time, when two or more fillers are reinforced in a polymer matrix, I wondered if the order in which the fillers were added could affect properties. Kenaf fiber and GnP were reinforced in the PP matrix through the CPC process to discover the degree of dispersion of fillers and the effect of filler-adding sequence on physical and mechanical properties. Tensile strength of the composites was increased up to 25%. In the case of Young's modulus, composites showed a 56% enhancement compared to the control. However, the impact strength decreased as a result of the increased brittleness when kenaf fiber was added.
Another study investigated the effects of hybrid filler systems (GnP/commercially available modified calcium carbonate (mCaCO3) nanoparticles) on mechanical and physical properties of polypropylene nanocomposites with three variables, filler loading amount, the number of compounding processes, and the compounding order of two different fillers. This study was concentrating on the impact strength based on the result that the material adding sequence affects the mechanical strength when manufacturing the hybrid composites. The hybrid composite system on GnP/mCaCO3/PP resulted in enhancement of impact strength, tensile strength, flexural modulus and Young's modulus. The number of compounding processes did not affect any strength, and the single compounding process was found to be more effective than the double compounding process.
Enhancement of impact strength in low temperature, and effect of filler-adding sequence on mechanical properties in hybrid composite system can be able to provide a solution for value-added high-end products in various industries such as application in logistics, aerospace or electric automobiles, where carbon-based nanomaterials are more affordable.
|
2 |
Efeito da incorporação de fibras curtas de sílica amorfa em compósitos de polipropileno utilizados pela indústria automotiva nacional. / Effect of the incorporation of short amorphous silica fibers in polypropylene composites used by the national automotive industry.Pizzitola, Ivani Caetano dos Passos 30 June 2011 (has links)
A adição de fibras de sílica em compósitos de polipropileno (PP) foi investigada neste trabalho como uma proposta de desenvolvimento de novos materiais utilizados pela indústria automotiva, os quais permitam a redução de peso do veículo e a consequente economia de combustível. As fibras são leves, constituídas de sílica amorfa e tratadas com aminossilano para uma melhor interação com a matriz polimérica. Compósitos de PP homopolímero, bem como de compósitos de PP heterofásico modificados com o copolímero etileno e 1-octeno (POE), foram formulados utilizando-se 20% de fibras de sílica e com PP funcionalizado com anidrido maleico (PP-g-MAH) como compatibilizante. As amostras foram avaliadas quanto às propriedades mecânicas, térmicas, características morfológicas, anisotropia e quanto a requisitos específicos, como emissões de voláteis, odor e resistência a riscos. O compósito de PP homopolímero na presença de 2% de PP-g- MAH apresentou o melhor balanço de propriedades, porém com comprometimento quanto à tenacidade. A análise morfológica desta formulação indicou a presença de fibras descoladas, demonstrando que o tratamento das fibras com o aminossilano, não foi totalmente efetivo para a redução das tensões interfaciais. Os compósitos de PP heterofásico modificados com POE (5% em peso) e com fibras de sílica apresentaram boa dispersão, forma e tamanho de domínios elastoméricos, os quais promoveram um bom efeito de tenacificação. O copolímero POE atuou como um agente compatibilizante, melhorando a adesão fibra-polímero. Por outro lado, estes compósitos apresentaram um grande número de partículas de borracha descoladas da matriz por cavitação, sugerindo que a adesão entre as fases pode ser melhorada, apesar da afinidade química da blenda PP/POE. De uma forma geral, as fibras curtas de sílica constituem uma alternativa potencial para o reforço de compósitos de PP. Além de menor densidade, os compósitos estudados apresentaram bons resultados quando comparados a formulações com o emprego de talco, o qual é muito empregado em peças automotivas. / The addition of silica fibers in polypropylene (PP) composites was investigated on this work as a proposal to develop new materials used in automotive industry, in order to enable the reduction of vehicle weight and the resulting fuel economy. The fibers are lightweight, made of amorphous silica and treated with amine silane for better interaction with the polymer matrix. Composites of PP homopolymer and PP heterophasic composites modified with ethylene and 1-octene (POE) were formulated using 20% of silica fibers as reinforcement and PP functionalized with maleic anhydride (PP-g-MAH) as compatibilizer agent. The samples were evaluated for mechanical, thermal, morphological, anisotropy, as well as specific requirements such as emissions of volatiles, odor and scratch resistant. The composite of PP homopolymer in the presence of 2% of PP-g-MAH showed the best balance of properties, however the tenacity was impaired. The morphological analysis of this formulation indicated the presence of detached fibers, demonstrating that treatment of fibers with the amine silane was not totally effective in reducing the interfacial tensions. Heterophasic PP composites modified with POE (5 wt%) and silica fibers presented good dispersion, shape and size of elastomeric domains, promoting a good toughening effect. The POE copolymer acted as a coupling agent, enhancing the adhesion fiber-polymer. On the other hand, these composites showed a large number of rubber particles detached from the matrix by cavitation, suggesting that the adhesion between the phases can be improved, despite the chemical affinity of the blend PP/POE. In general, short silica fibers are a potential alternative for polypropylene composites reinforcement. In addition to lower density, the studied composites demonstrated good results when compared to formulations with the use of talc, which is very used in automotive parts.
|
3 |
Synthesis And Characterization Of Polythiophene/montmorillonite And Polythiophene/polypropylene CompositesDulgerbaki, Cigdem 01 October 2006 (has links) (PDF)
In this study, polythiophene(PTP)/montmorillonite(MMT) nanocomposites were synthesized by in situ intercalative polymerization and chemical oxidative polymerization. In in situ intercalative polymerization method, composites containing 90 and 95% MMT were prepared. In chemical oxidative polymerization method, a series of composites ranging from 1 to 15% by weight MMT were synthesized. Thermal and morphological properties of samples were investigated by Differential Scanning Calorimeter (DSC), Thermal Gravimetric Analysis (TGA), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) / electrical conductivities were measured by four probe technique.
Since PTP/MMT composites are unprocessable PTP/polypropylene(PP) composites were prepared. Amounts of PTP were changed in the range 2-30 % by weight in the composites. Mechanical properties were investigated by tensile tests. Four probe technique was used for measurement of electrical conductivities. Morphological characterizations were made by SEM.
Formation of PTP and its incorporation in PTP/MMT composite were confirmed by FTIR analysis. DSC results showed that PTP does not have any thermal transition in the range 25-300 0C. TGA results showed that PTP/MMT composites have outstanding stability compared to that of PTP. XRD analysis revealed the formation of nanocomposites resulting from intercalation of thiophene in MMT at high MMT contents. Composites were observed as globular particles and clusters in SEM studies. Conductivity values of PTP/MMT composites were in the order of 10-3 S/cm. It is observed that tensile modulus of PTP/PP composites increases by the addition of PTP, but percentage strain at break does not appreciably change. Increasing PTP content increased electrical conductivity.
|
4 |
Efeito da incorporação de fibras curtas de sílica amorfa em compósitos de polipropileno utilizados pela indústria automotiva nacional. / Effect of the incorporation of short amorphous silica fibers in polypropylene composites used by the national automotive industry.Ivani Caetano dos Passos Pizzitola 30 June 2011 (has links)
A adição de fibras de sílica em compósitos de polipropileno (PP) foi investigada neste trabalho como uma proposta de desenvolvimento de novos materiais utilizados pela indústria automotiva, os quais permitam a redução de peso do veículo e a consequente economia de combustível. As fibras são leves, constituídas de sílica amorfa e tratadas com aminossilano para uma melhor interação com a matriz polimérica. Compósitos de PP homopolímero, bem como de compósitos de PP heterofásico modificados com o copolímero etileno e 1-octeno (POE), foram formulados utilizando-se 20% de fibras de sílica e com PP funcionalizado com anidrido maleico (PP-g-MAH) como compatibilizante. As amostras foram avaliadas quanto às propriedades mecânicas, térmicas, características morfológicas, anisotropia e quanto a requisitos específicos, como emissões de voláteis, odor e resistência a riscos. O compósito de PP homopolímero na presença de 2% de PP-g- MAH apresentou o melhor balanço de propriedades, porém com comprometimento quanto à tenacidade. A análise morfológica desta formulação indicou a presença de fibras descoladas, demonstrando que o tratamento das fibras com o aminossilano, não foi totalmente efetivo para a redução das tensões interfaciais. Os compósitos de PP heterofásico modificados com POE (5% em peso) e com fibras de sílica apresentaram boa dispersão, forma e tamanho de domínios elastoméricos, os quais promoveram um bom efeito de tenacificação. O copolímero POE atuou como um agente compatibilizante, melhorando a adesão fibra-polímero. Por outro lado, estes compósitos apresentaram um grande número de partículas de borracha descoladas da matriz por cavitação, sugerindo que a adesão entre as fases pode ser melhorada, apesar da afinidade química da blenda PP/POE. De uma forma geral, as fibras curtas de sílica constituem uma alternativa potencial para o reforço de compósitos de PP. Além de menor densidade, os compósitos estudados apresentaram bons resultados quando comparados a formulações com o emprego de talco, o qual é muito empregado em peças automotivas. / The addition of silica fibers in polypropylene (PP) composites was investigated on this work as a proposal to develop new materials used in automotive industry, in order to enable the reduction of vehicle weight and the resulting fuel economy. The fibers are lightweight, made of amorphous silica and treated with amine silane for better interaction with the polymer matrix. Composites of PP homopolymer and PP heterophasic composites modified with ethylene and 1-octene (POE) were formulated using 20% of silica fibers as reinforcement and PP functionalized with maleic anhydride (PP-g-MAH) as compatibilizer agent. The samples were evaluated for mechanical, thermal, morphological, anisotropy, as well as specific requirements such as emissions of volatiles, odor and scratch resistant. The composite of PP homopolymer in the presence of 2% of PP-g-MAH showed the best balance of properties, however the tenacity was impaired. The morphological analysis of this formulation indicated the presence of detached fibers, demonstrating that treatment of fibers with the amine silane was not totally effective in reducing the interfacial tensions. Heterophasic PP composites modified with POE (5 wt%) and silica fibers presented good dispersion, shape and size of elastomeric domains, promoting a good toughening effect. The POE copolymer acted as a coupling agent, enhancing the adhesion fiber-polymer. On the other hand, these composites showed a large number of rubber particles detached from the matrix by cavitation, suggesting that the adhesion between the phases can be improved, despite the chemical affinity of the blend PP/POE. In general, short silica fibers are a potential alternative for polypropylene composites reinforcement. In addition to lower density, the studied composites demonstrated good results when compared to formulations with the use of talc, which is very used in automotive parts.
|
5 |
Characterization of dispersive and distributive mixing in a co-rotating twin-screw compounding extruderEss, J. W. January 1989 (has links)
A new design of closely intermeshing co-rotating twin-screw compounding extruder, developed at Brunel University, has been utilized in the development of quantitative techniques for characterization of dispersive and distributive mixing in thermoplastics materials prepared by extrusion compounding. Image analysis procedures were used to quantify mixing of polypropylene composites containing calcium carbonate filler using reflected light microscopy on polished surfaces, and transmitted light microscopy of microtomed pigmented sections. Stereological statistics have been applied to raw sample data; results are discussed in relation to mechanistic phenomena influencing particle agglomeration, dispersion and distribution of fillers in thermoplastics. Dispersive or intensive mixing determined from calcium carbonate filled polypropylene specimens showed that processing parameters had no significant influence except when filler was added midway along the machine although the melting zone was highlighted as having a marked effect on the rate of filler dispersion. Premixing of filler and polymer introduced additional agglomeration into the filler. A series of model experiments were undertaken to assess the influence of specific parameters. In this context moisture content emerged as having the single most important effect on filler compaction. Distributive or extensive mixing of carbon black pigmented specimens was very significantly affected by the presence of segmented disc elements at the end of the screws. These elements produced more than a six-fold increase in distributive mixing in the extrudate.
|
6 |
Wood Fiber Filled Polyolefin CompositesKarmarkar, Ajay 08 1900 (has links)
The objective of the study is to improve the interfacial adhesion between the wood fibers and thermoplastic matrix. Efforts were also directed towards improving manufacturing processes so as to realize the full potential of wood fibers as reinforcing fillers. Chemical coupling plays an important role in improving interfacial bonding strength in wood-polymer composites. A novel compatibilizer with isocyanate functional group was synthesized by grafting m-Isopropenyl –α –α –dimethylbenzyl-isocyanate (m-TMI) onto isotactic polypropylene using reactive extrusion process. The compatibilizer was characterized with respect to its nature, concentration and location of functional group, and molecular weight.
There are two main process issues when blending polymers with incompatible filler: (1) creating and maintaining the target morphology, and (2) doing so with minimum degradation of fillers. A 28mm co-rotating intermeshing twin screw extrusion system was custom built and the design optimized for (1) blending biological fibers with thermoplastics, and (2) for melt phase fictionalization of thermoplastics by reactive extrusion.
To assess the effect of inclusion of wood fibers in polypropylene composites, a series of polypropylene wood fiber/wood flour filled composite materials having 10 to 50 wt % of wood content were prepared using the co-rotating twin screw extrusion system. m-TMI-g-PP and MAPP were used as coupling agents. Addition of wood fibers, at all levels, resulted in more rigid and tenacious composites. The continuous improvement in properties of the composites with the increasing wood filler is attributed to the effective reinforcement of low modulus polypropylene matrix with the high modulus wood filler. Studies on were also undertaken to understand effect of particle morphology, type and concentration of coupling agent, and effect of process additives on mechanical properties. Composites prepared with m-TMI-grafted-PP were much superior to the composites prepared with conventionally used maleated polypropylene in all the cases.
Non-destructive evaluation of dynamic modulus of elasticity (MoE) and shear modulus of wood filled polypropylene composite at various filler contents was carried out from the vibration frequencies of disc shaped specimens. The vibration damping behaviour of the composite material was evaluated. MoE and shear modulus were found to increase whereas damping coefficient decreased with the increasing filler content.
Knowledge of moisture uptake and transport properties is useful in estimating moisture related effects such as fungal attack and loss of mechanical strength. Hence, a study was undertaken to asses the moisture absorption by wood filled
polypropylene composites. Composites prepared with coupling agents absorbed at least 30% less moisture than composites without compatibilizer. Thermo-gravimetric
measurements were also carried out to evaluate the thermal stability and to evaluate kinetic parameters associated with thermal degradation of wood fiber and wood flour filled polypropylene composites. The moisture absorption and thermal behaviour are described based on analytical models.
High efficiency filler-anchored catalyst system was prepared by substituting of hydroxyl groups present on the cellulosic filler. The process involves immobilizing the cocatalyst onto the cellulosic filler surface followed by addition of metallocene catalyst and then polymerization of ethylene using this filler supported catalyst. The polymerization and composite formation takes place simultaneously. All the polymerization reactions were carried out in a high-pressure stirred autoclave. Effect of temperature, ethylene pressure, and cocatalyst to catalyst ratios (Al/TM ratios) were also studied. Studies on kinetics of polymerization showed that, higher Al/Zr ratio and higher temperature lead to higher polymerization rates but lower the molecular weight. A model incorporating effect of reaction parameter on polymerization rates has been developed.
|
7 |
Use of Supercritical Propylene to Produce Polypropylene/Clay Nanocomposites via in situ PolymerizationLisboa da Silva Neto, Manoel January 2014 (has links)
Nanocomposites have been receiving a lot the attention in the last decade from both industry and academia, since a small amount of nanofiller can significantly improve the materials properties. In the field of thermoplastics, polypropylene (PP) is one of the most used materials , due its easy processability, good balance of mechanical properties, and low cost. However, PP has certain shortcomings such as poor gas barrier and low thermal stability which limit its application. In order to be classified as nanocomposite the material needs to have at least one phase with one dimension less than 100nm. The properties achieved by nanocomposites will depend on the type of polymer, type of dispersed phase (filler), surface interaction between filler and polymer, and the production method. Nanofillers present many shapes and sizes, but they can be grouped in nanoparticles, nanotubes and nanoplates.
Montmorillonite (MMT) is a clay that has been extensively studied to produce PP nanocomposites, due to its availability, high aspect ratio, high modulus and high cation exchange capacity, characteristics that result in composite with improved properties. Three different morphologies can be observed in PP/MMT nanocomposites: agglomerates (similar to the conventional composites); intercalated; or exfoliated. Among these morphologies, exfoliation is the most desirable and the hardest to be achieved in PP/MMT nanocomposites.
Several methods have been used to produce PP nanocomposites. They can be grouped in three main groups: solution blending; melt processing; and in situ polymerization. In order to produce an exfoliated nanocomposite, some methods have assisted the exfoliation using supercritical fluids. Supercritical carbon dioxide is by far the most explored one.
Polypropylene is a semi-crystalline polymer and its properties rely on amount of its crystallinity, which is related to its stereochemical configurations. Isotactic PP and syndiotactic PP result in a semi-crystalline polymer while atactic results in an amorphous polymer. Two catalyst systems can be used to produce isotactic PP: Metallocene and Ziegler-Natta (ZN).
This research study was carried out in order to develop an appropriated process to produce PP/MMT nanocomposites with a high level of exfoliation using in situ polymerization assisted by supercritical propylene. The main idea is to use supercritical propylene to treat the montmorillonite before polymerization. In this process, the small molecules of propylene diffuse inside the clay galleries under supercritical conditions (high pressure and temperature) until reaching complete saturation. Once this saturation is reached the mixture of polypropylene and clay is catastrophically decompressed and fed into an autoclave reactor. The propylene polymerization reaction is them catalyzed by ZN catalyst. The pressure of the mixture of propylene-montmorillonite from the supercritical condition to the reactor autoclave decreased significantly, allowing propylene to expand and exfoliate the clay as it was fed in the reactor. Propylene in supercritical conditions was used in this works because it is the monomer for the subsequently polymerization and because its good properties at supercritical conditions.
In order to evaluate the results the following methods were used: transmission electron microscopy (TEM) to investigate the nanoscale sample morphology and evaluate the clay exfoliation, X-ray diffraction (XRD) to determine interlamellar distance, d001, of the clay, differential scanning calorimetry (DSC) to determine the amount of crystallization of polymer and composite, thermogravimetric analysis (TGA) to determine composite clay content, scanning electron microscopy (SEM) to evaluate the morphology, and clay swelling test to evaluate the compatibility among various pairs clays-solvent.
The first part of this work evaluated the interaction and swelling effects of different pairs of clay-solvent with or without sonication. This was necessary in order to choose the best clay to carry out the study. Four solvents with different polarity (chlorobenzene, toluene, cyclohexane and hexane) and eight clays (seven organically modified and one unmodified) were evaluated with or without sonication. Closite 15A and 93A presented the best results with different solvents and they were selected for further experiments. The experiments also showed that sonication improves the swelling of the clay.
Initial screening of the polymerization reaction was carried out using two conditions: feeding supercritical propylene without clay and adding clay without the addition of supercritical fluid.
The addition of supercritical propylene did not modify the morphology and properties of PP in comparison to the normal polymerization. The addition of Cloisite 15A or Cloisite 93A (pre-treated with toluene, not with supercritical propylene) produced nanocomposites. Although Cloisite 15A showed better results on the swelling tests, Cloisite 93A presented much better polymerization yield, therefore it was selected for further investigation using treatment with supercritical propylene. Cloisite93A was submitted to a treatment under four different supercritical propylene conditions (temperature and pressure) for thirty minutes. Each mixture was subsequently fed to the reactor through a catastrophic expansion inside an autoclave reactor running a propylene polymerization reaction. The results from XRD and TEM show a significant improvement on the exfoliation when treating the clay under supercritical propylene conditions followed by in situ polymerization, as compared to the in situ polymerization without treating the clay with supercritical propylene. In conclusion, the utilization of supercritical propylene has improved the dispersion of the clay at the nanoscale during the preparation of these nanocomposites by in situ polymerization.
|
Page generated in 0.0703 seconds