• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 3
  • Tagged with
  • 42
  • 42
  • 24
  • 15
  • 15
  • 12
  • 12
  • 12
  • 12
  • 9
  • 9
  • 9
  • 9
  • 9
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determinação da influência de seções transversais na resposta dinâmica de pontes através de ensaios em túnel de vento e identificação de sistemas

Limas, Lisandra Fraga January 2007 (has links)
Atualmente, com o aumento dos vãos, pontes suspensas e estaiadas tornaram-se mais propensas aos problemas de instabilidade, sendo o vento um fator determinante nas condições de estabilidade destas estruturas. A forma da seção transversal tem caráter decisivo na determinação dos parâmetros de projeto e, por esta razão, o estudo da ação do vento e sua interação com a ponte devem ser levados em conta desde a fase de projeto. O objetivo deste trabalho é gerar conhecimento específico sobre a influência da forma da seção transversal de pontes, estudando a tendência destas seções a apresentar instabilidade dinâmica do tipo drapejamento (“flutter”), através da disponibilização de um novo procedimento experimental-numérico. As respostas dinâmicas foram determinadas através de ensaios de oito modelos seccionais de tabuleiros de pontes em túnel de vento e pela técnica de identificação de sistemas, obtendo-se as velocidades críticas do vento e os parâmetros do sistema tais como freqüências e amortecimentos (ilustrados via derivativos aerodinâmicos), sendo que a técnica de identificação fundamentou-se nos métodos do “Random Decrement” (RD) e dos mínimos quadrados não-linear (Nonlinear Least Squares, NLS). Vinte e seis configurações distintas de sistemas vento-pontes foram analisadas, das quais se observaram bons resultados para ambos os modelos de identificação (COUPLE - ajusta individualmente a curva de decaimento de cada movimento via NLS e EQUAL - ajusta simultaneamente as curvas de decaimento de ambos os movimentos via NLS) de acordo com os seguintes critérios: literatura, correlação entre os sistemas vento-pontes, correlação entre os próprios modelos de identificação e critérios inerentes ao processamento dos modelos. Destaca-se o modelo COUPLE em relação ao EQUAL por apresentar os melhores resultados dos parâmetros identificados, requerer o menor número de iterações no processo e ter a melhor convergência no ajuste das curvas de decaimento vertical e torsional. As alterações na forma arquitetônica da seção transversal do tabuleiro confirmaram-se como uma boa alternativa para melhoria do desempenho aerodinâmico da ponte, aumentando a velocidade crítica de drapejamento e até suprimindo a ocorrência deste fenômeno. O amortecimento ratificou-se como um recurso bastante efetivo na estabilização da seção da ponte. O escoamento turbulento também ratificou sua tendência estabilizadora para a ponte. / Currently, with the increase of the spans, suspension and cable-stayed bridges turned themselves more sensitive to instability problems, being the wind a decisive factor in the stability conditions of these structures. The shape of the cross-section plays an important role in the determination of the design parameters and, for this reason, the study of the wind action and its interaction with the bridge should be taken into account during the design stage. The purpose of this work is to develop specific knowledge on the influence of the cross-section shape of bridges, studying the tendency of these sections to present the dynamic instability called flutter, through a new experimental-numerical procedure. The dynamic responses were determined through wind tunnel tests of eight distinct bridge deck cross-section models and by the system identification technique. The critical wind velocities and system parameters such as frequencies and dampings (flutter derivatives) were obtained, being the identification technique based in the Random Decrement (RD) and in the Nonlinear Least Squares (NLS) methods. Twenty six distinct configurations of wind-bridge systems were analyzed, from which good results to both identification models (COUPLE - fits individually the decay curve of every movement by NLS and EQUAL - fits simultaneously the decay curves of both movements by NLS) were observed according with the following criteria: literature, correlation among the wind-bridge systems, correlation between both identification models and inherent models processing criteria. The COUPLE model presented the best results for the identified parameters, required a much lower amount of processing as well as presented the best convergence at the fitting of the vertical and torsional decay curves. The changes of shape in the deck cross-section were confirmed as a good alternative to the improvement of the bridge aerodynamic performance, increasing the flutter critical velocity, and even suppressing the occurrence of this phenomenon. The damping ratified itself as a very effective alternative recourse for the stabilization of the bridge section. The turbulent flow also ratified its stabilizer tendency for the bridge.
2

Determinação da influência de seções transversais na resposta dinâmica de pontes através de ensaios em túnel de vento e identificação de sistemas

Limas, Lisandra Fraga January 2007 (has links)
Atualmente, com o aumento dos vãos, pontes suspensas e estaiadas tornaram-se mais propensas aos problemas de instabilidade, sendo o vento um fator determinante nas condições de estabilidade destas estruturas. A forma da seção transversal tem caráter decisivo na determinação dos parâmetros de projeto e, por esta razão, o estudo da ação do vento e sua interação com a ponte devem ser levados em conta desde a fase de projeto. O objetivo deste trabalho é gerar conhecimento específico sobre a influência da forma da seção transversal de pontes, estudando a tendência destas seções a apresentar instabilidade dinâmica do tipo drapejamento (“flutter”), através da disponibilização de um novo procedimento experimental-numérico. As respostas dinâmicas foram determinadas através de ensaios de oito modelos seccionais de tabuleiros de pontes em túnel de vento e pela técnica de identificação de sistemas, obtendo-se as velocidades críticas do vento e os parâmetros do sistema tais como freqüências e amortecimentos (ilustrados via derivativos aerodinâmicos), sendo que a técnica de identificação fundamentou-se nos métodos do “Random Decrement” (RD) e dos mínimos quadrados não-linear (Nonlinear Least Squares, NLS). Vinte e seis configurações distintas de sistemas vento-pontes foram analisadas, das quais se observaram bons resultados para ambos os modelos de identificação (COUPLE - ajusta individualmente a curva de decaimento de cada movimento via NLS e EQUAL - ajusta simultaneamente as curvas de decaimento de ambos os movimentos via NLS) de acordo com os seguintes critérios: literatura, correlação entre os sistemas vento-pontes, correlação entre os próprios modelos de identificação e critérios inerentes ao processamento dos modelos. Destaca-se o modelo COUPLE em relação ao EQUAL por apresentar os melhores resultados dos parâmetros identificados, requerer o menor número de iterações no processo e ter a melhor convergência no ajuste das curvas de decaimento vertical e torsional. As alterações na forma arquitetônica da seção transversal do tabuleiro confirmaram-se como uma boa alternativa para melhoria do desempenho aerodinâmico da ponte, aumentando a velocidade crítica de drapejamento e até suprimindo a ocorrência deste fenômeno. O amortecimento ratificou-se como um recurso bastante efetivo na estabilização da seção da ponte. O escoamento turbulento também ratificou sua tendência estabilizadora para a ponte. / Currently, with the increase of the spans, suspension and cable-stayed bridges turned themselves more sensitive to instability problems, being the wind a decisive factor in the stability conditions of these structures. The shape of the cross-section plays an important role in the determination of the design parameters and, for this reason, the study of the wind action and its interaction with the bridge should be taken into account during the design stage. The purpose of this work is to develop specific knowledge on the influence of the cross-section shape of bridges, studying the tendency of these sections to present the dynamic instability called flutter, through a new experimental-numerical procedure. The dynamic responses were determined through wind tunnel tests of eight distinct bridge deck cross-section models and by the system identification technique. The critical wind velocities and system parameters such as frequencies and dampings (flutter derivatives) were obtained, being the identification technique based in the Random Decrement (RD) and in the Nonlinear Least Squares (NLS) methods. Twenty six distinct configurations of wind-bridge systems were analyzed, from which good results to both identification models (COUPLE - fits individually the decay curve of every movement by NLS and EQUAL - fits simultaneously the decay curves of both movements by NLS) were observed according with the following criteria: literature, correlation among the wind-bridge systems, correlation between both identification models and inherent models processing criteria. The COUPLE model presented the best results for the identified parameters, required a much lower amount of processing as well as presented the best convergence at the fitting of the vertical and torsional decay curves. The changes of shape in the deck cross-section were confirmed as a good alternative to the improvement of the bridge aerodynamic performance, increasing the flutter critical velocity, and even suppressing the occurrence of this phenomenon. The damping ratified itself as a very effective alternative recourse for the stabilization of the bridge section. The turbulent flow also ratified its stabilizer tendency for the bridge.
3

Determinação das características aerodinâmicas de seções transversais de pontes em túnel de vento

Limas, Lisandra Fraga January 2003 (has links)
A construção de grandes pontes, em especial estaiadas e suspensas, tornou-se mais freqüente nos últimos anos, inclusive no Brasil. O vento constitui-se em uma das principais ações neste tipo de estrutura, sendo fator determinante nas condições de estabilidade da mesma. A forma da seção transversal tem caráter decisivo na determinação dos parâmetros de projeto e, por esta razão, o estudo da ação do vento e sua interação com a ponte devem ser levados em conta na fase de projeto. O objetivo deste trabalho é gerar conhecimento específico sobre a influência da forma da seção transversal de pontes nas características aerodinâmicas estáticas (coeficientes aerodinâmicos), bem como estudar a tendência destas seções a apresentar um tipo de instabilidade estática chamada de divergência torsional. Os coeficientes aerodinâmicos, numa primeira etapa, foram determinados através de estudo experimental de oito formas de seções transversais de pontes em túnel de vento. Na segunda etapa, com base nos resultados da primeira, foi analisada por método analítico a tendência destas seções a apresentar divergência torsional. Os resultados dos coeficientes aerodinâmicos foram coerentes do ponto de vista aerodinâmico. No que se refere à influência da forma da seção transversal, observou-se que as formas mais aerodinâmicas realmente apresentam melhores resultados, isto é, coeficientes aerodinâmicos menores. Quanto à divergência torsional, segundo os resultados obtidos neste trabalho, verificou-se que este fenômeno não constitui um problema para as estruturas de seções de tabuleiros de pontes na faixa de velocidades de vento reais.
4

Determinação da influência de seções transversais na resposta dinâmica de pontes através de ensaios em túnel de vento e identificação de sistemas

Limas, Lisandra Fraga January 2007 (has links)
Atualmente, com o aumento dos vãos, pontes suspensas e estaiadas tornaram-se mais propensas aos problemas de instabilidade, sendo o vento um fator determinante nas condições de estabilidade destas estruturas. A forma da seção transversal tem caráter decisivo na determinação dos parâmetros de projeto e, por esta razão, o estudo da ação do vento e sua interação com a ponte devem ser levados em conta desde a fase de projeto. O objetivo deste trabalho é gerar conhecimento específico sobre a influência da forma da seção transversal de pontes, estudando a tendência destas seções a apresentar instabilidade dinâmica do tipo drapejamento (“flutter”), através da disponibilização de um novo procedimento experimental-numérico. As respostas dinâmicas foram determinadas através de ensaios de oito modelos seccionais de tabuleiros de pontes em túnel de vento e pela técnica de identificação de sistemas, obtendo-se as velocidades críticas do vento e os parâmetros do sistema tais como freqüências e amortecimentos (ilustrados via derivativos aerodinâmicos), sendo que a técnica de identificação fundamentou-se nos métodos do “Random Decrement” (RD) e dos mínimos quadrados não-linear (Nonlinear Least Squares, NLS). Vinte e seis configurações distintas de sistemas vento-pontes foram analisadas, das quais se observaram bons resultados para ambos os modelos de identificação (COUPLE - ajusta individualmente a curva de decaimento de cada movimento via NLS e EQUAL - ajusta simultaneamente as curvas de decaimento de ambos os movimentos via NLS) de acordo com os seguintes critérios: literatura, correlação entre os sistemas vento-pontes, correlação entre os próprios modelos de identificação e critérios inerentes ao processamento dos modelos. Destaca-se o modelo COUPLE em relação ao EQUAL por apresentar os melhores resultados dos parâmetros identificados, requerer o menor número de iterações no processo e ter a melhor convergência no ajuste das curvas de decaimento vertical e torsional. As alterações na forma arquitetônica da seção transversal do tabuleiro confirmaram-se como uma boa alternativa para melhoria do desempenho aerodinâmico da ponte, aumentando a velocidade crítica de drapejamento e até suprimindo a ocorrência deste fenômeno. O amortecimento ratificou-se como um recurso bastante efetivo na estabilização da seção da ponte. O escoamento turbulento também ratificou sua tendência estabilizadora para a ponte. / Currently, with the increase of the spans, suspension and cable-stayed bridges turned themselves more sensitive to instability problems, being the wind a decisive factor in the stability conditions of these structures. The shape of the cross-section plays an important role in the determination of the design parameters and, for this reason, the study of the wind action and its interaction with the bridge should be taken into account during the design stage. The purpose of this work is to develop specific knowledge on the influence of the cross-section shape of bridges, studying the tendency of these sections to present the dynamic instability called flutter, through a new experimental-numerical procedure. The dynamic responses were determined through wind tunnel tests of eight distinct bridge deck cross-section models and by the system identification technique. The critical wind velocities and system parameters such as frequencies and dampings (flutter derivatives) were obtained, being the identification technique based in the Random Decrement (RD) and in the Nonlinear Least Squares (NLS) methods. Twenty six distinct configurations of wind-bridge systems were analyzed, from which good results to both identification models (COUPLE - fits individually the decay curve of every movement by NLS and EQUAL - fits simultaneously the decay curves of both movements by NLS) were observed according with the following criteria: literature, correlation among the wind-bridge systems, correlation between both identification models and inherent models processing criteria. The COUPLE model presented the best results for the identified parameters, required a much lower amount of processing as well as presented the best convergence at the fitting of the vertical and torsional decay curves. The changes of shape in the deck cross-section were confirmed as a good alternative to the improvement of the bridge aerodynamic performance, increasing the flutter critical velocity, and even suppressing the occurrence of this phenomenon. The damping ratified itself as a very effective alternative recourse for the stabilization of the bridge section. The turbulent flow also ratified its stabilizer tendency for the bridge.
5

Determinação das características aerodinâmicas de seções transversais de pontes em túnel de vento

Limas, Lisandra Fraga January 2003 (has links)
A construção de grandes pontes, em especial estaiadas e suspensas, tornou-se mais freqüente nos últimos anos, inclusive no Brasil. O vento constitui-se em uma das principais ações neste tipo de estrutura, sendo fator determinante nas condições de estabilidade da mesma. A forma da seção transversal tem caráter decisivo na determinação dos parâmetros de projeto e, por esta razão, o estudo da ação do vento e sua interação com a ponte devem ser levados em conta na fase de projeto. O objetivo deste trabalho é gerar conhecimento específico sobre a influência da forma da seção transversal de pontes nas características aerodinâmicas estáticas (coeficientes aerodinâmicos), bem como estudar a tendência destas seções a apresentar um tipo de instabilidade estática chamada de divergência torsional. Os coeficientes aerodinâmicos, numa primeira etapa, foram determinados através de estudo experimental de oito formas de seções transversais de pontes em túnel de vento. Na segunda etapa, com base nos resultados da primeira, foi analisada por método analítico a tendência destas seções a apresentar divergência torsional. Os resultados dos coeficientes aerodinâmicos foram coerentes do ponto de vista aerodinâmico. No que se refere à influência da forma da seção transversal, observou-se que as formas mais aerodinâmicas realmente apresentam melhores resultados, isto é, coeficientes aerodinâmicos menores. Quanto à divergência torsional, segundo os resultados obtidos neste trabalho, verificou-se que este fenômeno não constitui um problema para as estruturas de seções de tabuleiros de pontes na faixa de velocidades de vento reais.
6

Determinação das características aerodinâmicas de seções transversais de pontes em túnel de vento

Limas, Lisandra Fraga January 2003 (has links)
A construção de grandes pontes, em especial estaiadas e suspensas, tornou-se mais freqüente nos últimos anos, inclusive no Brasil. O vento constitui-se em uma das principais ações neste tipo de estrutura, sendo fator determinante nas condições de estabilidade da mesma. A forma da seção transversal tem caráter decisivo na determinação dos parâmetros de projeto e, por esta razão, o estudo da ação do vento e sua interação com a ponte devem ser levados em conta na fase de projeto. O objetivo deste trabalho é gerar conhecimento específico sobre a influência da forma da seção transversal de pontes nas características aerodinâmicas estáticas (coeficientes aerodinâmicos), bem como estudar a tendência destas seções a apresentar um tipo de instabilidade estática chamada de divergência torsional. Os coeficientes aerodinâmicos, numa primeira etapa, foram determinados através de estudo experimental de oito formas de seções transversais de pontes em túnel de vento. Na segunda etapa, com base nos resultados da primeira, foi analisada por método analítico a tendência destas seções a apresentar divergência torsional. Os resultados dos coeficientes aerodinâmicos foram coerentes do ponto de vista aerodinâmico. No que se refere à influência da forma da seção transversal, observou-se que as formas mais aerodinâmicas realmente apresentam melhores resultados, isto é, coeficientes aerodinâmicos menores. Quanto à divergência torsional, segundo os resultados obtidos neste trabalho, verificou-se que este fenômeno não constitui um problema para as estruturas de seções de tabuleiros de pontes na faixa de velocidades de vento reais.
7

Instantaneous and time-dependent response and strength of jointless bridge beams

Gastal, Francisco de Paula Simoes Lopes January 1986 (has links)
The purpose of this study was to develop a generalized numerical solution for the analysis of deck-continuous, composite, multi-span bridge girders without joints. A finite element computer program has been developed, with the capability of performing instantaneous and time-dependent response analyses, and strength analyses, for a general type of bridge beams. Steel, reinforced or prestressed concrete girders, topped by a reinforced concrete deck-slab, under various sequences of construction and with different types of continuity may be equally analyzed by the proposed solution. An isoparametric beam element and a connection, spring-like element, have been modified for modeling the nonlinear intrinsic characteristics of the materials, as well as accounting for the presence of mild steel reinforcements, prestressing tendons and the effects of cracking. Timependent properties of the comprising materials are assumed to follow the simplified models suggested by the American Concrete Institute and Prestressed Concrete Institue. The effects of a superimposed temperature gradient are included also in the analysis. A thorough description of the problem and of the properties assumed in modeling the materials is given first, followed by development of the finite element formulation. The proposed solution is validated by the analyses of ten different beams, with comparisons being made with available analytical and experimental data. Two different cases of deckcontinuous, jointless, multi-span beams are investigated and their performances are compared to the extreme situations of non and full continuity. Their behaviors have been found to be very satisfactory under dead and service load conditions . Under vertical loading, the response of a deck-continuous beam may be comparable to the response of a non-or fully continuous beam, depending primarily on the imposed supporting conditions.
8

Um modelo para a simulação numérica da ação do vento sobre seções de ponte

Braun, Alexandre Luis January 2002 (has links)
Este trabalho tem por objetivo formular e aplicar um modelo numérico para a análise aeroelástica de seções de ponte. O escoamento em torno de uma seção de ponte rígida, sem movimento, assim como o escoamento em torno de uma seção que possui deslocamentos verticais, horizontais e rotações devidas a efeitos de torção, são investigados para obter os coeficientes aerodinâmicos e o número de Strouhal. Procura-se também determinar as cargas devido ao vento que atuam sobre a estrutura, assim como a velocidade do vento que provoca o fenômeno de instabilidade dinâmica denominado “flutter”. Para a análise do escoamento bidimensional levemente compressível, utiliza-se um método explícito de dois passos com uma formulação Arbitrária Lagrangeana-Euleriana (ALE). A turbulência é simulada diretamente para as grandes escalas, sendo que o modelo simples de Smagorinsky é incluído para simular as escalas de turbulência menores que a malha utilizada. O método dos elementos finitos é empregado para a discretização espacial. A estrutura é considerada como um corpo rígido com restrições elásticas segundo as componentes de deslocamento horizontais e verticais e segundo a rotação torcional. O acoplamento entre o fluido e a estrutura é efetuado aplicando as condições de compatibilidade e de equilíbrio na interface. A análise dinâmica da estrutura é efetuada através do método clássico de Newmark. / Formulation and application of a numerical model for aeroelastic analysis of bridge girder cross-sections is the mean of this work. The flow around stationary cross-sections, as well as cross-sections undergoing cross-wind vertical and horizontal (bending) displacements and rotatory (torsional) motion, are investigated for assessment of aerodynamic coefficients and Strouhal number. Determination of forced wind loads and flutter wind speed are also investigated. The two-dimensional of a slightly compressible fluid is analysed using an explicit two-step method and a Arbitrary Lagrangian-Eulerian (ALE) formulation. The turbulence is simulated using Large Eddy Simulation (LES). Smagorinsky’s model is included as a sub-grid scale model. The finite element method is used for space discretization. The structure is considered as a rigid body with elastic restrains for horizontal and vertical displacement components and for torsional rotation. Coupling between fluid and stucture is accomplished by applying compatibility and equilibrium conditions at the fluid-solid interface. The structural dynamic analysis is performed using the classical Newmark’s method.
9

Um modelo para a simulação numérica da ação do vento sobre seções de ponte

Braun, Alexandre Luis January 2002 (has links)
Este trabalho tem por objetivo formular e aplicar um modelo numérico para a análise aeroelástica de seções de ponte. O escoamento em torno de uma seção de ponte rígida, sem movimento, assim como o escoamento em torno de uma seção que possui deslocamentos verticais, horizontais e rotações devidas a efeitos de torção, são investigados para obter os coeficientes aerodinâmicos e o número de Strouhal. Procura-se também determinar as cargas devido ao vento que atuam sobre a estrutura, assim como a velocidade do vento que provoca o fenômeno de instabilidade dinâmica denominado “flutter”. Para a análise do escoamento bidimensional levemente compressível, utiliza-se um método explícito de dois passos com uma formulação Arbitrária Lagrangeana-Euleriana (ALE). A turbulência é simulada diretamente para as grandes escalas, sendo que o modelo simples de Smagorinsky é incluído para simular as escalas de turbulência menores que a malha utilizada. O método dos elementos finitos é empregado para a discretização espacial. A estrutura é considerada como um corpo rígido com restrições elásticas segundo as componentes de deslocamento horizontais e verticais e segundo a rotação torcional. O acoplamento entre o fluido e a estrutura é efetuado aplicando as condições de compatibilidade e de equilíbrio na interface. A análise dinâmica da estrutura é efetuada através do método clássico de Newmark. / Formulation and application of a numerical model for aeroelastic analysis of bridge girder cross-sections is the mean of this work. The flow around stationary cross-sections, as well as cross-sections undergoing cross-wind vertical and horizontal (bending) displacements and rotatory (torsional) motion, are investigated for assessment of aerodynamic coefficients and Strouhal number. Determination of forced wind loads and flutter wind speed are also investigated. The two-dimensional of a slightly compressible fluid is analysed using an explicit two-step method and a Arbitrary Lagrangian-Eulerian (ALE) formulation. The turbulence is simulated using Large Eddy Simulation (LES). Smagorinsky’s model is included as a sub-grid scale model. The finite element method is used for space discretization. The structure is considered as a rigid body with elastic restrains for horizontal and vertical displacement components and for torsional rotation. Coupling between fluid and stucture is accomplished by applying compatibility and equilibrium conditions at the fluid-solid interface. The structural dynamic analysis is performed using the classical Newmark’s method.
10

Instantaneous and time-dependent response and strength of jointless bridge beams

Gastal, Francisco de Paula Simoes Lopes January 1986 (has links)
The purpose of this study was to develop a generalized numerical solution for the analysis of deck-continuous, composite, multi-span bridge girders without joints. A finite element computer program has been developed, with the capability of performing instantaneous and time-dependent response analyses, and strength analyses, for a general type of bridge beams. Steel, reinforced or prestressed concrete girders, topped by a reinforced concrete deck-slab, under various sequences of construction and with different types of continuity may be equally analyzed by the proposed solution. An isoparametric beam element and a connection, spring-like element, have been modified for modeling the nonlinear intrinsic characteristics of the materials, as well as accounting for the presence of mild steel reinforcements, prestressing tendons and the effects of cracking. Timependent properties of the comprising materials are assumed to follow the simplified models suggested by the American Concrete Institute and Prestressed Concrete Institue. The effects of a superimposed temperature gradient are included also in the analysis. A thorough description of the problem and of the properties assumed in modeling the materials is given first, followed by development of the finite element formulation. The proposed solution is validated by the analyses of ten different beams, with comparisons being made with available analytical and experimental data. Two different cases of deckcontinuous, jointless, multi-span beams are investigated and their performances are compared to the extreme situations of non and full continuity. Their behaviors have been found to be very satisfactory under dead and service load conditions . Under vertical loading, the response of a deck-continuous beam may be comparable to the response of a non-or fully continuous beam, depending primarily on the imposed supporting conditions.

Page generated in 0.0798 seconds