• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 10
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception d'un prototype de platelage en aluminium pour les ponts aluminium/bois

Djedid, Amar 14 January 2022 (has links)
Il existe au Québec plusieurs ponts routiers dont le platelage ainsi que la structure portante sont en bois. Ces platelages sont recouverts d'une membrane d'étanchéité parfaite ainsi qu'un pavage en béton bitumineux. Il a été constaté que l'étanchéité du platelage influe grandement sur la durée de vie de telles structures en bois. Le ministère des Transports du Québec a construit en 2015 un pont constitué d'un platelage en aluminium sur des poutres d'acier ; ce projet a permis de démontrer l'étanchéité de ce platelage. Il est donc judicieux de combiner un tel platelage avec des poutres en bois, afin d'en augmenter la durée de vie de l'ouvrage. De plus, la conception d'un platelage en aluminium sur des poutres en bois constitue un débouché économique considérable pour le Québec, où ces deux matériaux sont abondants. En effet, le gouvernement du Québec a mis en place la Charte sur le bois (ministère des Forêts, Faunes et Parcs) et la Stratégie québécoise de développement de l'aluminium (ministère de l'Économie et de l'Innovation). Ces actions ont permis une mise en commun des efforts économiques du gouvernement du Québec afin d'augmenter l'utilisation du bois et de l'aluminium dans les infrastructures. Le présent projet vise à concevoir un platelage étanche et modulaire en aluminium pour des ponts routier, soudé par friction-malaxage, sur des poutres en bois, conformément aux exigences du code canadien sur la conception des ponts routiers (CAN / CSA S6-14), ainsi que les Règles de calculs de charpentes en bois (CAN / CSA O86-14). Ce platelage modulaire est constitué de plusieurs panneaux fabriqués dans un environnement contrôlé, afin d'en garantir la qualité, mais aussi de permettre une installation rapide sur le site. Ceci réduit grandement les coûts de construction, le temps d'immobilisation ainsi que des déviations temporaires des routes. De plus, une connexion a été développée pour s'adapter à la différence entre le comportement thermique de l'aluminium et du bois, ainsi qu'une extrusion sacrificielle pour l'ancrage de la glissière de sécurité. La conception a été réalisée par des analyses par la méthode en éléments finis, prenant en compte le comportement élastoplastique des matériaux, le contact entre les composants ainsi que la considération des grands déplacements à l'aide du logiciel NX/NASTAN. / There are in Québec several bridges entirely made of wood. Their decks are covered with a waterproof membrane and a bituminous paving. It has been observed that a waterproof deck increases the lifespan of such wooden structures. The ministère des Transports du Québec built a bridge in 2015 with an aluminium deck on steel girders. This project demonstrated that such a deck is completely waterproof. Therefore, it is sensible to combine such a deck with wooden girders in order to protect them and increase the lifespan of such structures. Moreover, it is economically sound to combine aluminium and wood in bridge building in Québec, where these two materials are abundant. To this effect, the Québec government put in place the wood charter (ministère des Forêts, Faunes et Parcs) and the Québec aluminium development strategy (ministère de l'Économie et de l'Innovation). These allowed the synchronisation of the economic actions of the Québec government to increase the use of wood and aluminium in infrastructures building. This project aims to design a waterproof and modular aluminium deck for highway bridges, friction-stir welded and resting on glued laminated timber girders, in accordance with the requirements of the Canadian Highway Bridge Design Code (CAN / CSA S6-14), and the Engineering Design in Wood Code (CAN / CSA O86-14). This modular deck is made up of several panels fabricated in a controlled environment and installed on-site, which greatly reduces the road closure time and the long-term maintenance costs. In addiction, a clamp connecting the deck to the girders were designed to allow for the difference in the thermal behaviour of wood and aluminium. In addition, a sacrificial extrusion has been designed to attach the crash barrier on the deck. The project was design using non-linear finite elements analysis, which take into account the elastoplastic behaviour of aluminium and the orthotropic nature of wood, the friction contact between components and the large displacements of the structure, using the commercial software NX/NASTAN.
2

Fatigue optimization and quality control of friction stir welded joints in aluminum highway bridge decks

Trimech, Mahmoud 01 December 2023 (has links)
Titre de l'écran-titre (visionné le 28 novembre 2023) / Les ponts en aluminium modernes sont composés de plusieurs longues extrusions multi-vide soudées. Ces joints soudés sont particulièrement vulnérables à la rupture en fatigue car ils sont susceptibles de se présenter comme des zones d'initiation de fissures en fatigue sous l'effet du chargement cyclique du trafic. La fatigue est un état limite critique dans la conception de nombreux ponts de courte à moyenne portée. Traditionnellement, les techniques de soudage conventionnelles par fusion ont été utilisées pour fabriquer les tabliers de ponts en aluminium. Ces techniques ont été connues par produire certains défauts métallurgiques et une variété de défauts volumiques lorsqu'ils sont utilisés pour des structures en aluminium. Ces défauts ont un effet significatif sur la résistance en fatigue des joints soudés. Cependant, une technologie de soudage « relativement » nouvelle connue comme soudage par friction-malaxage (FSW) a émergé et a été suggérée pour être utilisée dans des projets d'infrastructure impliquant de l'aluminium. Cette approche innovante de soudage a montré qu'elle produisait une qualité de soudure améliorée et offrait un meilleur contrôle des défauts de soudure par rapport aux méthodes de soudage traditionnelles. Pourtant, son utilisation est encore limitée en raison de l'insuffisance de directives dans les codes et normes actuels. Des facteurs clés tels que la résistance en fatigue des joints FSW et les critères complets de contrôle de la qualité, y compris les niveaux de tolérance pour les défauts couramment rencontrés, restent non standardisés. De plus, les modèles numériques utilisés pour la conception en fatigue des ponts en aluminium sont rares. Comme les alliages d'aluminium extrudés sont de plus en plus utilisés pour la construction de ponts, il existe un besoin croissant de modèles numériques robustes capables de prédire avec précision le comportement en fatigue des tabliers de pont en aluminium extrudé soudés sous diverses conditions de chargement. Cette thèse doctorale vise à caractériser le comportement en fatigue des configurations FSW les plus récentes dans l'industrie des tabliers de pont, en particulier les joints FSW en bout à bout à recouvrement. Le projet cherche également à établir des niveaux de tolérance pour les défauts d'ajustement associés aux tabliers de ponts et à étudier leurs effets sur les performances métallurgiques et en fatigue des joints FSW en bout à bout à recouvrement. Enfin, la thèse vise à développer des modèles numériques capables de prédire la durée de vie à en fatigue d'échantillons FSW en bout à bout à recouvrement à grande échelle extraits de vrais tabliers de ponts en aluminium sous diverses configurations de chargement. Des essais expérimentaux et une analyse numérique ont été menés pour étudier le comportement en fatigue des joints FSW en bout à bout à recouvrement utilisés dans les tabliers de ponts en aluminium. Des essais de fatigue à grande échelle ont été conçues pour provoquer la rupture en fatigue dans le joint FSW des échantilons constitués d'une paire d'extrusions utilisées dans les tabliers de ponts. Les résultats expérimentaux ont indiqué que la rupture s'est initiée à partir du défaut de la remontée de surface à la pointe de l'interface dans la racine de la soudure et s'est propagée jusqu'au point d'application de la charge. Les simulations numériques ont évalué les données expérimentales de fatigue avec l'approche de la contrainte effective de concentration (ENS) recommandée par l'Institut International International de Soudage (IIW). Les résultats ont montré que la courbe de conception en fatigue IIW FAT-71 a évalué de manière conservatrice les données de fatigue. Les défauts d'ajustement, y compris les écarts et les décalages d'outil, ont été simulés et fabriqués expérimentalement, et leurs niveaux de tolérance ont été déterminés en fonction d'un processus de préqualification par étapes en utilisant les critères d'acceptation du code de contrôle de la qualité du FSW. De plus, une condition de soudage où la direction de rotation de l'outil FSW a été inversée, a été simulée expérimentalement pour déterminer quelle direction de rotation fournit une meilleure résistance en fatigue pour les joints FSW en bout à bout à recouvrement. Des échantillons de fatigue FSW en bout à bout à recouvrement à grande échelle présentant ces conditions de soudage ont été fabriqués et testés en fatigue. Les données de fatigue de ces essais ont été analysées statistiquement et comparées, ainsi qu'une analyse numérique pour enquêter sur les différences de résistance en fatigue entre les conditions de soudage. Les résultats ont révélé que le défaut de la remontée de surface a joué un rôle critique dans les mécanismes de rupture en fatigue et la résistance en fatigue des joints FSW en bout à bout à recouvrement, l'absence de défaut de remontée de surface conduisant à des améliorations significatives de la résistance en fatigue. Un cadre numérique pour prédire la durée de vie en fatigue des échantillons FSW en bout à bout à recouvrement a été développé, basé sur un modèle d'éléments finis. Ce cadre a d'abord prédit avec précision la localisation et la direction de l'initiation de l'amorçage de fatigue en utilisant la théorie des distances critiques (TCD) avec à la fois la méthode de point (PM) et la méthode de ligne (LM). Ensuite, en fonction de la localisation estimée de l'initiation de l'amorçage de fatigue, la durée de vie en fatigue est prédite en utilisant la TCD et les modèles simplistes de mécanique de la rupture élastique linéaire (LEFM). L'efficacité du cadre numérique a été vérifiée en comparant ses prédictions avec des données expérimentales de fatigue provenant de essais de fatigue réalisés sur des échantillons sous différentes configurations de chargement, démontrant un accord raisonnable entre les prédictions et les résultats expérimentaux. / Modern aluminium bridge decks are made from welding several long multi-void extrusions. These welded joints are particularly vulnerable to fatigue failure as they are likely to serve as fatigue crack initiation zones under the effect of cyclic traffic loading. Fatigue is a critical limit state in the design of many short to medium bridges. Traditionally, conventional fusion welding techniques have been used to fabricate aluminium bridge decks. These techniques have been known to produce metallurgical defects and a variety of volumetric defects when used for aluminium structures. These defects have significant effect on the fatigue resistance of welded joints. However, a relatively new welding technology known as friction stir welding (FSW) has emerged and has been suggested for use in infrastructure projects involving aluminium. This innovative welding approach was shown to produce an enhanced weld quality and provide superior control over weld defects to the traditional welding methods. Yet, its use is still limited due to insufficient guidelines in current codes and standards. Key factors such as the fatigue strength of FSW joints and comprehensive quality control criteria, including tolerance levels for commonly occurring defects, remain unstandardized. Furthermore, the numerical models used for fatigue design in aluminium bridges are scarce. As extruded aluminium alloys are increasingly used for bridge construction, there is a growing need for robust numerical models capable of accurately predicting the fatigue behaviour of welded extruded aluminium bridge decks under various load conditions. This doctoral thesis aims to characterize the fatigue behaviour of the most recent FSW configurations in the bridge deck industry, specifically butt-lap FSW joints. The project also seeks to establish tolerance levels for fit-up defects associated with bridge decks and investigate their effects on the metallurgical and fatigue performance of butt-lap FSW joints. Lastly, the thesis aims to develop numerical models capable of predicting the fatigue life of FSW aluminium bridge decks under various loading configurations. Experimental tests and numerical analysis were conducted to study the fatigue behaviour of butt-lap FSW joints used in aluminium bridge decks. Large-scale fatigue experiments were designed to provoke fatigue failure in the FSW joint of specimens consisting of a pair of extrusions used in bridge decks. Experimental results indicated that failure initiated from the hooking defect at the tip of the interface in the weld root and propagated to the load application point. Numerical simulations assessed the experimental fatigue data with the effective notch stress (ENS) approach as recommended by the International Institute of Welding (IIW). The results showed that the IIW FAT-71 fatigue design curve conservatively assessed the fatigue data. Fit-up defects, including gaps and tool offsets, were simulated and fabricated experimentally, and their tolerance levels were determined based on a stage prequalification process using FSW quality control code acceptance criteria. Additionally, a welding condition where the FSW tool rotational direction was reversed, was experimentally simulated to investigate which rotational direction provides better fatigue strength for butt-lap FSW joints. Large-scale butt-lap FSW fatigue specimens featuring these welding conditions were fabricated and fatigue-tested. The fatigue data from these tests were statistically analyzed and compared, along with numerical analysis to investigate differences in fatigue strength between welding conditions. Results revealed that the hooking defect played a critical role in fatigue failure mechanisms and fatigue strength of butt-lap FSW joints, with the absence of the hooking defect leading to significant improvements in fatigue strength. A numerical framework for predicting the fatigue life of butt-lap FSW specimens was developed, based on finite element analysis. This framework first accurately predicted the fatigue initiation location and direction using the theory of critical distances (TCD) with both the point method (PM) and line method (LM). Depending on the estimated fatigue initiation location, the fatigue life is then predicted using TCD and linear elastic fracture mechanics (LEFM) models. The numerical framework's efficiency was verified by comparing its predictions with experimental fatigue data from fatigue tests conducted on specimens under different loading configurations, demonstrating reasonable agreement between the predictions and experimental results.
3

Comportement structural d'un platelage en aluminium sur poutre en acier : répartition transversale des charges

St-Gelais, Catherine January 2018 (has links)
L’utilisation de platelages en aluminium dans les ponts est récente et peu répandue comparativement aux matériaux plus traditionnels tels que l’acier et le béton. Malgré l’introduction récente du chapitre 17 dans la norme canadienne des ponts routiers (CAN/CSA-S6) sur l’utilisation de l’aluminium structural dans les ponts, les connaissances concernant le comportement structural du platelage en aluminium restent limitées. Ainsi, les spécifications du code pour la conception ne fournissent pas des méthodologies suffisantes pour les vérifications de la résistance et de l’état limite d’utilisation. Par exemple, le calcul des fractions de charge de camion à l’aide de la méthode simplifiée pour la distribution transversale dans les platelages en aluminium est basé sur des valeurs spécifiées pour les platelages en madrier de bois, ce qui semble restrictif. Un autre exemple concret est lié au calcul du moment plastique qui permet d’établir la résistance du pont en flexion. La méthode simplifiée de calcul de la largeur effective dans le cas où il y aurait action composite n’est pas adaptée pour un platelage ayant une section alvéolée comme c’est le cas du platelage en aluminium. Une analyse utilisant les méthodes d'éléments finis est nécessaire pour établir ces paramètres de conception. Dans ce mémoire, une étude de la répartition transversale des charges de trafic pour des dispositions d’extrusions longitudinales et transversales par rapport aux poutres en acier est effectuée à l’aide de la méthode des éléments finis. Plusieurs modèles de ponts sont réalisés afin d’étudier l’influence de la portée et de l’espacement des poutres sur les fractions de charge de camion ainsi que sur l’aire effective du platelage dans le cas d’action composite parfaite. Une comparaison avec les valeurs préconisées par la norme CAN/CSA-S6-14 ainsi qu’une comparaison entre les deux types de dispositions sont également effectuées. Il a été déterminé que la norme surestime grandement les valeurs des fractions de charge de camion, allant jusqu’à une surestimation de 25% à 40%. De plus, il s’est avéré que les fractions de charge de camion calculées pour les modèles ayant les extrusions transversales aux poutres étaient toujours inférieures à celles calculées pour les modèles ayant les extrusions installées longitudinalement aux poutres. Pour ce qui est des résultats concernant l’aire effective, les valeurs obtenues avec les extrusions parallèles aux poutres étaient plus basses que celles obtenues avec les extrusions transversales. Enfin, lors de la comparaison avec les valeurs de la norme pour un platelage en béton, les aires effectives trouvées à l’aide des modèles étaient toujours inférieures à celles de la norme. / The use of aluminium decks in bridges has received attention in recent years, as the bridge engineering community discovers the advantages of this material compared with the traditional construction materials such as steel and concrete. Despite the recent introduction of Chapter 17 in the Canadian Highway Bridge Design Code, CAN/CSA S6, which permits engineers to use aluminium for bridge construction, the structural design application still remains a daunting task. Essentially, the code’s specifications for design do not provide concise and detailed methodologies for strength and serviceability verifications. As an example, for the simplified traffic load analysis, it appears that the factors for transverse distribution of traffic loads specified for aluminium bridge decks are based on values specified for wood plank decks, which appears insufficient. Another practical example relates to the determination of the plastic moment required to establish the bending moment capacity for the bridge section. Considering that a bridge deck solution in aluminium consists of a multi-cellular section made from extrusions, the application of the simplified method in determining the effective width of the deck section becomes a non-trivial task. A refined analysis using finite element methods is required to establish these design parameters for an optimized bridge solution in aluminium. In the present study, a finite element analysis is carried out to investigate the transverse distribution of traffic load on aluminium decks made from longitudinal and transverse extrusions, supported by steel girders. A number of bridge models are developed to study the influence of girder spacing and bridge span on the truck load fraction for aluminium decks and for establishing the effective area for the composite aluminium deck with steel girder system. It was determined that the code largely overestimates the values of truck load fractions, up to 25% to 40%. In addition, it was found that the truck load fractions calculated for models with transverse extrusion arrangements were always lower than those calculated for models with longitudinal extrusion. The transverse arrangement is therefore more effective in transferring truck loads to supporting girders. With respect to the effective area, the study showed that these values were lower for longitudinal extrusions than transverse extrusions. Finally, when compared with the values obtained using the simplified method by the code for a concrete deck, the effective areas determined were lower than those obtained from the code.
4

Comportement dynamique des ponts à platelage d'aluminium extrudé sous l'effet des surcharges routières

Petitclerc, Samuel 13 March 2020 (has links)
L’aluminium est le matériau tout désigné pour les donneurs d’ouvrage étant à la recherche de matériaux plus durables pour les ponts routiers. Alliant un excellent ratio résistance/poids à une excellente résistance naturelle à la corrosion, son utilisation sous la forme d’un platelage extrudé connecté à des poutres d’acier assure une structure plus légère et requérant beaucoup moins d’entretien que les structures traditionnelles. Toutefois, la légèreté de l’aluminium, qui est un avantage important lors de la conception de la structure sous-jacente ainsi que lors de la construction, peut se révéler être un défi important d’un point de vue dynamique, en raison des fréquences de vibration qu’elle produit. Considérant que le code canadien sur le calcul des ponts routiers prescrit l’utilisation d’un coefficient de majoration dynamique (CMD) pour prendre en compte les effets dynamiques lors de la conception, et que la valeur de ce coefficient est basée sur le comportement dynamique des ponts traditionnels, des interrogations sont soulevées quant à l’applicabilité de ce coefficient pour des ponts à platelage d’aluminium, ayant un comportement dynamique différent. Afin de répondre à ces questions, des modèles dynamiques simplifiés permettant de représenter deux camions canadiens actuels, le CL-625 et le train double B, ont été développés et implémentés dans Abaqus. Par la suite, ces modèles furent utilisés afin de réaliser plusieurs séries d’analyses dynamiques, cherchant à évaluer l’impact sur la réponse du pont de divers paramètres et comparer les résultats obtenus aux valeurs prescrites. Les résultats obtenus dans cette étude, qui se veut le point de départ de l’analyse du comportement dynamique des ponts à platelage d’aluminium, semblent indiquer qu’en dépit d’un comportement dynamique différent, les valeurs de CMD prescrites par le code canadien sont sécuritaires pour des ponts à platelage d’aluminium. Toutefois, de nombreuses autres études seront nécessaires avant d’émettre des recommandations finales. / Aluminium is a material of choice for any highway bridge owners looking for more durable materials. Combining an excellent strength to weight ratio with an excellent corrosion resistance, an extruded aluminium deck connected to steel girders provides a lighter structure and requires less maintenance than the usual materials, such as steel or concrete. However, the aluminium’s lightweight, which is a huge advantage for the foundations design as well as for the construction, can become a concern when the bridge’s dynamic behavior is considered, due to its higher vibration frequencies. Considering that the Canadian Highway Bridge Design Code prescribes the use of a dynamic load allowance (DLA) factor to account for the dynamic effects of the traffic loads on the bridge, and that the values prescribed are based on the dynamic behavior of traditional bridges, some doubts arose about the applicability of this coefficient to aluminium deck bridges, which are expected to have a different dynamic behavior. To validate these speculations, simplified dynamic models were developed to replicate the dynamic behavior of two Canadian trucks, the CL-625 and the train double B. These models were then implemented in Abaqus and used in a series of dynamic analysis investigating the effect on the bridge response of different parameters, both from the truck and the bridge. Results have shown that, despite having a different dynamic behavior, the dynamic amplifications observed on aluminium deck bridges were always lower than the DLA values prescribed by the Canadian code, indicating that, for the situations studied, those values are safe to use. However, further studies will be required before any final conclusions can be made about the applicability of the DLA values in their current state.
5

Connecteurs en cisaillement pour développer l'action composite dans les ponts aluminium/acier

Desjardins, Victor 24 April 2018 (has links)
Les alliages d'aluminium ont plusieurs propriétés qui rendent intéressantes son utilisation dans les ouvrages d’art, en particulier dans un contexte de climat nordique. En effet, ce matériau a un faible ratio poids/résistance, une très bonne résistance à la corrosion, une résilience élevée à basse température, ainsi qu’une bonne formabilité. Pour ces raisons, l’aluminium est envisagé pour la production de platelages de ponts constitués d’extrusions multicellulaires soudées entre elles. Ces platelages doivent être connectés sur des poutres en acier au moyen d’un assemblage boulonné antiglissement, afin de développer l’action mixte entre le platelage et les poutres. La difficulté de ce projet réside dans la difficulté d’accès à l’intérieur des cellules extrudées. Cela empêche la bonne mise en place des connexions boulonnées antiglissement respectant les exigences de la norme canadienne sur les ponts routiers. Deux solutions sont étudiées : l’utilisation de boulons aveugles et la conception d’une extrusion d’attache entre le platelage et les poutres. Pour chacune de ces solutions, une étude de faisabilité est faite. Dans le cas des boulons aveugles, deux modèles ont été identifiés, puis modélisés par éléments finis afin de déterminer s’ils se conforment aux exigences de la norme CAN/CSA-S6-2014. Dans le cas des extrusions d’attache, deux modèles seront conçus et testés par éléments finis, au regard de la norme. Les solutions explorées dans ce travail sont ensuite comparées par le moyen d’analyses SWOT, afin de mettre en évidences leurs forces, faiblesses, opportunités et menaces. Cela permettra d’aboutir à des recommandations. Mots-clefs 6063-T6, aluminium, assemblage antiglissement, boulons aveugles, CAN/CSAS6-2014, éléments finis, extrusions, platelage, pont. / Aluminium alloys have many properties that make this material fit for structural uses, in particular in a nordic climate. This metal has indeed a good weight/resistance ratio, an excellent corrosion resistance, a high resilience at low temperatures, and a good formability. For these reasons, aluminium is considered for the production of bridge decks made of multi-cellular extrusions welded together. Decks are to be connected to steel girders with slip-critical bolted joints, in order to achieve composite action between the deck and the girders. The main concern is the lack of accessibility of the interior of the extrusions. This prevents the setting up of the slip-critical bolteds joints, compliantly with the canadian standards about highway bridges. Two solutions are studied : the use of blind bolts and the design of an special extrusion to join the deck to the beams. For each of these solutions, a feasability study is led. Two models of blind bolts are identified, then modeled by finite elements to determine wether they match the CAN/CSA-S6-2014 requirements about slip-critical joints. The solutions explored in this project are finally campared by the mean of SWOT analysis, in order to bring out their strenghts, weaknesses, opportunities and threats. Key-words 6063-T6, aluminium, blind bolt, bridge, CAN/CSA-S6-2014, deck, extrusions, finite elements slip-critical joint.
6

Développement d'assemblages de dispositif de retenue pour les ponts à platelage en aluminium

Cormier, Martin 12 September 2019 (has links)
Les dispositifs de retenue sur les ouvrages d’art sont indispensables, puisqu’ils permettent d’atténuer les conséquences d’une perte de contrôle d’un véhicule en empêchant sa sortie de la voix carrossable. Pour obtenir l’accréditation finale d’un dispositif de retenue, celui-ci doit être soumis à un essai de collision à grandeur réelle afin de garantir que l’interaction avec les véhicules est sécuritaire pour un niveau de performance spécifié. Certaines modifications apportées sur un dispositif ayant fait l’objet d’un essai de collision peuvent être autorisées si des analyses par éléments finis peuvent démontrer que la performance n’est pas affectée par ces modifications. Le projet se concentre sur la possibilité d’installer un dispositif de retenue, déjà testé et approuvé, sur un platelage en aluminium constitué d’extrusions multicellulaires soudées entre elles. L’objectif est de développer une connexion innovatrice permettant de fixer un dispositif de retenue sur un platelage en aluminium, de sorte que ce dernier ne subisse aucune déformation permanente advenant un impact d’un véhicule sur le dispositif de retenue. La solution proposée est l’introduction d’une extrusion d’aluminium sacrificielle, reliée mécaniquement entre le dispositif et le platelage, conçue de façon à se plastifier sous les forces d’impact d’un véhicule. Cela permettrait de dissiper l'énergie de l'impact tout en s’assurant que les autres composants de l'assemblage demeurent dans le domaine élastique. L'étude comporte deux étapes. La première consiste à concevoir et à analyser l’assemblage à l’aide des charges statiques équivalentes, prescrites par le code canadien sur la conception des ponts routiers CAN/CSA S6-14. La deuxième partie consiste à réaliser une simulation numérique dynamique, reproduisant les conditions de l’essai de collision à grandeur réelle et à appliquer des procédures de vérification et de validation sur l’interaction entre le dispositif de retenue et le véhicule, en comparant les données de façon qualitative et quantitative avec celles de l’essai réel. / Traffic crash barriers are used in bridge construction to withstand vehicular impact and protect the lives of occupants and other road users by safely redirecting the vehicles onto the roadway. Current design standards require that the designed traffic barrier system be crash-tested under full-scale reallife conditions to assure satisfactory interaction with vehicles at a specified performance level. Certain modifications to an already crash-tested barrier may be permitted if it can be demonstrated by finite element analysis that they would not adversely affect the designed performance of the barrier. The present study investigates the possibility of installing an already crash-tested and approved traffic barrier on a bridge deck made from welded multi-cellular aluminium extrusions. The research objective is to develop an innovative connection design for attaching a selected traffic barrier to the aluminium deck in such a way that under vehicular-induced impact forces, the aluminium deck panel would not undergo permanent plastic deformation. The proposed solution consists of a sacrificial aluminium extrusion, mechanically connected between the barrier and the bridge deck, and carefully designed and detailed to yield under vehicular impact forces. This would help dissipate the energy from the impact, while allowing other components in the assembly to remain essentially elastic. The study involves two stages: the first stage consists of the design and analysis of the connector system based on the equivalent static forces prescribed by the Canadian Highway Bridge Design Standard CAN/CSA S6-14. The second phase consists of a dynamic computer simulation of the real crash-test, and a series of verification and validation processes of the interaction between the traffic barrier and the vehicle, by comparing both qualitatively and quantitatively with observations from the real crash
7

Structural performance assessment and life-cycle cost analysis of the first all-aluminum bridge

Fortin, Thomas 25 January 2024 (has links)
Titre de l'écran-titre (visionné le 11 janvier 2024) / La combinaison d'un ratio élevé résistance-poids, une haute résistance à la corrosion, une bonne recyclabilité et une facilité de fabrication font des alliages d'aluminium, un excellent candidat pour des constructions durables et esthétiques. Son utilisation dans les infrastructures implique un entretien relativement faible tout au long de leur cycle de vie et est particulièrement adaptée pour les environnements froids et corrosifs, comme le Canada. Bien que l'utilisation de l'aluminium dans les ponts remonte à 1933, le pont d'Arvida au Québec, est le premier pont autoroutier entièrement en aluminium, inauguré en 1950. D'après les expériences passées, il est évident que ce pont nécessite un relativement faible entretien à ce jour, tandis que le remplacement du tablier en béton a été l'une des principales sources de problèmes d'entretien. Malgré sa bonne performance à ce jour, aucune analyse approfondie n'a été réalisée sur ce pont qui pourrait fournir des informations utiles sur les performances des alliages d'aluminium dans les constructions de ponts. L'objectif principal de cette recherche est d'évaluer la performance du pont Arvida sur deux aspects spécifiques : son intégrité structurale et sa performance à long terme d'un point de vue économique. Dans le cadre de cet objectif, une analyse structurale numérique a été réalisée sur le pont à l'aide du logiciel d'ingénierie *SAFI Bridge Structural Engineering*, et sa performance a été évaluée selon les critères de conception actuels de la norme CSA S6-19. Les résultats de cette analyse ont montré que la structure actuelle du pont Arvida ne serait pas en mesure de supporter les charges de circulation modernes recommandées par la norme canadienne. En fait, cela explique la limitation de poids actuelle imposée à ce pont par les autorités. Pour évaluer davantage la performance économique à long terme de ce pont, une analyse du coût du cycle de vie a été réalisée sur la structure existante en utilisant les coûts passés fournis par le ministère des Transports du Québec ainsi que des coûts futurs projetés. Traditionnellement, les coûts initiaux des matériaux ont été les facteurs décisifs pour la sélection des matériaux de construction. Cependant, ces dernières années, les coûts d'entretien des infrastructures existantes ont considérablement augmenté, ce qui a nécessité une approche alternative pour la sélection des matériaux. À cet égard, l'analyse du coût du cycle de vie (ACCV) des infrastructures permet une comparaison équitable entre différentes alternatives, car elle prend en compte non seulement les coûts initiaux de construction, mais aussi les coûts d'entretien, les coûts de retards des utilisateurs, les coûts de démolition et tous les autres coûts qui peuvent survenir pendant la durée de vie de la structure. L'ACCV du pont Arvida montre que les coûts d'entretien associés à la réhabilitation du tablier de béton gouvernent le coût total d'acquisition du pont. De toute évidence, le tablier en béton annule tous les avantages de la structure en aluminium à faible entretien. Afin de mettre et confirmer les avantages à long terme d'un tablier en aluminium sur le pont existant, une autre ACCV a également été réalisée avec un tablier en aluminium hypothétique. La comparaison des résultats conclue que l'alternative du tablier en aluminium peut réduire significativement les coûts d'entretien malgré des coûts initiaux élevés, et ainsi l'utilisation de l'aluminium dans la construction de ponts peut être bénéfique sur une durée de vie plus longue. / The combination of high strength-to-weight ratio, excellent durability, corrosion resistance, recyclability, and formability make aluminum alloys an excellent candidate for both sustainable and aesthetically pleasing constructions. More importantly, the application of aluminum alloys can be beneficial in civil infrastructure due to their relatively low maintenance over the life cycle, especially for cold and corroding environments, such as Canada. Although the use of aluminum in bridge applications has started dating back to 1933, the Arvida Bridge in Quebec, Canada is the first all-aluminum arch deck type bridge that was built in 1950. From past experiences, it has been evident that this bridge has so far required relatively low maintenance while replacement of the concrete deck has been one of the primary sources of maintenance issues. Despite its good performance till date, an in-depth analysis has not been undertaken on this bridge that can provide useful insights on the performance of aluminum alloys in bridge constructions. The overarching goal of this research is to assess the performance of the Arvida bridge over two specific aspects: its structural integrity and its long-term performance from an economic standpoint. With this objective, a numerical structural analysis has been performed on the bridge in the *SAFI Bridge Structural Engineering* software and its performance has been evaluated under the current design criteria recommended by the Canadian Standard Association for highway bridges (CSA S6-19). The outcomes from this analysis pointed that the current Arvida bridge structure would not be able to carry the modern traffic loads recommended by the Canadian standard. In fact, this explains the current weight limitation on this bridge that has been imposed by the authority. To further evaluate the long-term economic performance of this bridge, life-cycle cost analysis (LCCA) that allows a fair comparison between different alternatives and projects since it takes into account not only the initial costs of construction but also the maintenance costs, user delays, demolition costs and any other costs that can occur in the life span of the structure. To estimate the total life cycle cost of the Arvida bridge, the past construction and maintenance costs have been extracted from the information provided by the *Ministère des Transports du Québec (MTQ)* while the future costs that can incur until the end of design life of the bridge have been estimated. The results of the LCCA shows that the maintenance costs corresponding to the concrete deck rehabilitation governs the overall costs. Clearly, the concrete deck dismisses all the advantages of the low-maintenance aluminum structure. In order to highlight the long-term benefit of low maintenance aluminum deck on the existing bridge, an alternative LCCA has also been performed with a hypothetical aluminum deck. The comparison of the results of the LCCA on these two options (i.e., existing concrete deck and alternative aluminum deck) has implied that an aluminum deck alternative can significantly reduce the maintenance costs despite having higher initial cost, and thus, the use of aluminum in bridge construction can be beneficial for a longer life span.
8

Nouveau concept modulaire de tablier de pont tout aluminium à portée simple et assemblable en chantier

Burgelin, Jean-Baptiste 24 April 2018 (has links)
Dans le but de concurrencer l’utilisation des dalles de béton et du bois dans les tabliers de pont, on étudie dans ce mémoire la possibilité de dimensionner un tablier de pont tout en aluminium et économiquement intéressant. Le cahier des charges spécifie que le nouveau concept soit de 15 mètres de portée, fabricable en usine et assemblable en chantier. Ce mémoire s’inscrit plus globalement dans la stratégie québécoise de développement de l’aluminium (2015-2025) et est en partenariat avec le ministère des Transports, de la Mobilité durable et de l’Électrification des transports québécois (MTMDET). Après avoir écarté la possibilité d’un platelage en aluminium totalement faisable au Québec de 15 mètres de long sans système d’attache entre les panneaux, on a proposé une conception innovante en ayant recours simplement à des extrusions dont le diamètre circonscrit est inférieur à 460 mm. En voulant valider la conception au regard de la norme CAN/CSA S6-2014 et par la méthode des éléments finis, on s’est aperçu que le chapitre 17 concernant les ouvrages d’aluminium de ladite norme était très sécuritaire et parfois incomplet. On a proposé alors de nouvelles méthodes pour avoir accès aux fractions de charge de camion ou à la largeur effective pour un platelage en aluminium. Une fois ces considérations techniques étudiées, une analyse économique a été menée, s’intéressant particulièrement aux coûts de production d’un platelage en aluminium et en le comparant au coût de production d’une dalle de béton ou d’un platelage en bois. Enfin, fort des analyses faites au cours de ce mémoire, on a proposé une conception finale répondant aux critères de la norme et qui pourrait être économiquement viable. / This thesis studies the possibility of designing a full aluminum deck which would be economically interesting in order to compete with the use of concrete slab and wood for bridge decks. The requirements for this project are that the new concept has a span of 15 meters, can be built in a factory and can be assembled in the field. This thesis is part of the Quebec aluminum development strategy (SQDA 2015-2025) and is done in partnership with the ministry of Transportation, of durable Mobility and of transport Electrification (MTMDET). Having rejected the possibility of a 15 meters long aluminum deck without any clamp system between panels and entirely made in Quebec, an innovating concept has been proposed using only extrusion with a circumscribed diameter lower than 460 mm (18 inches). Seeking to validate the new concept with the CAN/CSA S6-2014 code and by the finite element method, it has been realized that chapter 17 of this code, related to aluminum structures, is very conservative and sometimes incomplete. Consequently, new methods have been proposed to have access to truck load fractions or to effective length of an aluminum deck. An economic analysis has been made after having studied the technical considerations. It focused on production costs of an aluminum deck and a comparison with the production cost of a concrete slab or a wooden deck. Finally, considering the results, a final conception has been proposed which qualifies for the code and is economically viable.
9

Comportement des assemblages antiglissement dans les ponts de type platelage en aluminium sur poutres en acier

Charron-Drolet, Daniel January 2018 (has links)
Le haut rapport résistance/poids de l’aluminium, son extrudabilité et sa grande résistance à la corrosion rendent ce matériau prometteur dans un système de pont durable et performant où un platelage alvéolé en aluminium repose sur des poutres en acier. Il est avantageux de développer l’action composite entre le platelage et les poutres, mais plusieurs défis entravent l’atteinte de l’action composite, assurée par des assemblages boulonnés antiglissement. Leur conception doit tenir compte de : la corrosion galvanique, du coefficient de frottement de l’interface acier-aluminium, du coefficient de dilatation thermique double de l’aluminium en comparaison avec celui de l’acier et des défis liés à l’installation des connecteurs en cisaillement. Un programme expérimental a été élaboré pour évaluer la performance des connecteurs en cisaillement mécanique ponctuel identifiés. L’alliage d’aluminium 6063-T6, les boulons ASTM F3125 grade A325 et F1852 ainsi que les boulons aveugles Oneside et Ultra-Twist des fabricants Ajax et Huck ont été mis à l’essai. Les essais de glissement à court terme démontrent que le coefficient de frottement et la rigidité de l’assemblage augmentent lorsque l’épaisseur des plaques en aluminium augmente et que, en contact avec de l’aluminium grenaillé, l’acier métallisé offre une meilleure résistance au glissement et une plus grande rigidité que l’acier galvanisé. La relaxation par glissement a causé une diminution systématique et significative de la charge de précontrainte. La charge de précontrainte initiale moyenne de chacun des connecteurs est suffisante, mais celle des boulons aveugles démontre une variabilité élevée. La relaxation s’apparente à celle des assemblages entièrement galvanisés et le resserrage est efficace pour la diminuer. Les cycles de température causent une perte cumulative de la charge de précontrainte et celle-ci est aussi diminuée par une baisse de température. Pour finir, la résistance au glissement estimée après 75 ans et à -47°C est largement supérieure que celle de conception. / Aluminium’s high strength to weight ratio, coupled with its extrudability and high corrosion resistance makes it very promising in a durable and efficient bridge concept, where an aluminium honeycombed-deck rests on steel girders. It is advantageous to develop a composite behavior between the multicellular aluminium deck and the steel girders, but many challenges hinder the composite behavior, developed by slip critical bolted connections. Indeed, the design of such connectors need to take into account: galvanic corrosion, the slip factor at the faying surface between steel and aluminium, the thermal expansion factor of aluminium, which is twice that of steel, and the installation challenges of the shear connectors. An experimental program was drafted to evaluate the performance of the identified shear connectors. The 6063-T6 aluminium alloy, the ASTM F3125 grade A325 and F1852 bolts as well as two blind bolts, Ajax’s Oneside and Huck’s Ultra-Twist, were tested. The short-term slip tests reveal that the slip factor and the joint rigidity increase when thicker aluminium plates are used, and that, in contact with sandblasted aluminium, metallized steel yields a higher slip factor and joint rigidity then hot-dip galvanized steel. Relaxation induced by slip caused a systematic and significant decrease of the bolt preload during slip. The achieved initial bolt preload of the identified shear connectors is appropriate, but the standard deviation of the blind bolts is high. The measured relaxation is similar to that of an all hot-dip galvanized steel joints and retightening the bolts is an efficient method to reduce it. Temperature cycles yield acumulative loss of the bolt preload and a decrease in temperature yields a direct reduction of the bolt preload. Finally, the slip resistance estimated at 75 years and at -47°C is largely superior to the design slip resistance.
10

Comportement dynamique des ponts routiers à platelage d’aluminium extrudé compte tenu de la rugosité de la surface

Ben Afia, Achraf 24 March 2021 (has links)
L'aluminium est un matériau très durable avec une excellente résistance à la corrosion qui pourrait être un excellent choix soit pour la construction de nouveaux ponts, soit pour la réhabilitation et le remplacement de tabliers de pont détériorés. Les ponts construits avec des platelages d’aluminium extrudé et des poutres d’acier offrent une solution prometteuse au problème du vieillissement de l'infrastructure des ponts. L'aluminium en tant que matériau structurel est aussi connu pour sa légèreté, qui facilite le transport et l'installation, et réduit les coûts des fondations. Cependant, cette caractéristique les rend sensibles vis-à-vis les excitations causées par les surcharges routières. La conception dynamique des ponts routiers par le code canadien de conception des ponts routiers (CSA S6-19) est basée sur le concept de facteurs d'amplification dynamique équivalents (FAD). Cependant, ces facteurs ont été établis principalement pour les ponts construits avec des matériaux traditionnels tels que le béton, le bois et l'acier. Il est donc prudent d'évaluer l'applicabilité de ces facteurs pour le cas des ponts légers construits avec des platelages d’aluminium extrudé. En outre, comme la rugosité de la surface des chaussées joue un rôle important dans le comportement dynamique d'un pont, il est important de considérer l'influence de la rugosité sur la réponse dynamique du pont. L'objectif de cette recherche est d'étudier le comportement dynamique des ponts composés des platelages d’aluminium extrudé et des poutres d’acier sous les surcharges routières en tenant compte de l'effet de la rugosité de la surface, et par conséquent d'évaluer l'applicabilité des FAD de la norme de conception actuelle pour de telles structures. Pour y parvenir, des modèles numériques ont été développés sur Abaqus pour une sélection des paramètres et des configurations des ponts. L'effet de la rugosité de surface sur la réponse dynamique est également étudié en générant l'algorithme de densité spectrale de puissance (DSP) selon la norme ISO 8608. Les résultats ont montré que les FAD dépendent énormément à la fois du ratio des fréquences véhicule-pont ainsi que de la rugosité de la surface. Au fur et à mesure que le ratio des fréquences véhicule-pont augmente, le FAD augmente de manière significative. Avec un ratio des fréquences véhicule-pont approchant 0,5, le FAD calculé dépasse la valeur du FAD recommandée par le code canadien. Il est à noter que les résultats de cette étude sont limités aux configurations de pont considérées à l'étude, et qu'une étude paramétrique approfondie est nécessaire pour tirer une conclusion générale sur l'applicabilité des valeurs actuelles du FAD pour les ponts légers en aluminium extrudé. / Aluminum is a highly durable material with excellent corrosion resistance that could be an excellent choice either for construction of new bridges or for rehabilitation and replacement of deteriorated bridge decks. Extruded aluminum deck-on-steel girder bridges offer promising solution to the aging bridge infrastructure problem. Aluminum as a structural material is also known for its lightweight, which facilitates transportation and installation, and reduces foundation requirements. However, this characteristic makes it sensitive to excitations from vehicular traffic. The dynamic design of highway bridges by the Canadian Highway Bridge Design Code (CSA S6-19) is based on the concept of equivalent dynamic amplification factors (DAF). However, these factors were derived largely for bridges made with traditional materials such as concrete, wood and steel. It is prudent to evaluate whether these factors are applicable to lightweight bridges made with extruded aluminum decks. In addition, since road roughness plays an important role in the dynamic behavior of a bridge, it is important to consider the influence of roughness on the bridge vibration response. The objective of this research is to investigate the dynamic behavior of aluminum deck-on-steel girder bridges under vehicular loads considering the effect of road roughness, and consequently evaluate the applicability of the current design DAFs for such structures. For this purpose, numerical models were developed in Abaqus for a selected bridge configuration and loading parameters. The effect of road roughness on dynamic response is also investigated by generating the power spectral density (PSD) algorithm according to ISO 8608. Results showed that the DAF strongly depend on both the vehicle-bridge frequency ratio and the road roughness. As the vehicle-to-bridge frequency ratio increases, the DAF rises significantly. With a vehicle-to-bridge frequency ratio approaching 0.5, the calculated DAF exceeds the DAF value recommended by the Canadian code. It is noted that results of this study are limited to the bridge configurations considered in the study, and extensive parametric study is required to draw a general conclusion about the applicability of the current DAF values for lightweight extruded aluminum bridges.

Page generated in 0.0661 seconds