Spelling suggestions: "subject:"tool boiling heat btransfer"" "subject:"tool boiling heat cotransfer""
1 |
Review of Cryogenic Pool Boiling Critical Heat Flux Databases, Assessment of Models and Correlations, and Development of New Universal CorrelationRaj Mukeshbhai Patel (11655130) 20 December 2021 (has links)
<p>Despite worldwide interest in a number of applications involving cryogenic fluids that are crucial to future space exploration, there is presently a lack of a large, reliable cryogenic pool boiling critical heat flux (CHF) database that can be used for assessment of accuracy of available predictive tools - model and correlations – or development of new tools. This shortcoming is a primary motivation for the present study, prompting compilation of a new consolidated cryogenic pool boiling CHF database from world literature. The database is used to assess accuracy of previous models and correlations, which are segregated according to ability to predict key operating parameters, such as pressure, surface orientation, and subcooling. A new correlation is constructed which shows very good predictive accuracy, evidenced by a mean absolute error of 16.95%, based on Earth gravity data which comprise a large fraction of the consolidated database. Using a limited subset of datapoints for three cryogens and a reduced gravity range of 0 to 0.7466, the new correlation is further modified with a reduced gravity multiplier to tackle reduced gravity conditions. The modified correlation has a mean absolute error of 17.47%, slightly higher than for Earth gravity alone. Overall, the new correlations are proven far more accurate than all prior models and correlations and therefore constitute new powerful tools for design of cryogenic space systems. It is shown CHF is very sensitive to pressure, increasing with increasing pressure up to maximum before decreasing appreciably toward critical pressure. CHF is also shown to be strongly influenced by surface orientation, being highest for horizontal surfaces and decreasing monotonically with increasing orientation angle, and increasing fairly linearly with increased subcooling.</p><p>Additionally, CHF models and correlations are assessed using amassed quenching CHF data that showed overpredictions of data. A new correlation is formulated which includes the effects of surface material and heater thickness to achieve high predictive accuracy for complied quenching CHF database. The new correlation has a mean absolute error and root mean square error of 10.79% and 16.12%, respectively, based on a compiled database. Analysis of complied quenching data showed that CHF is sensitive to the surface material, increasing with increasing thermal conductivity but, the influence of surface material becomes weak with increasing thermal conductivity. CHF is also strongly influenced by heater thickness, increasing with increased heater thickness till it reaches the asymptotic thickness. </p>
|
2 |
Experimental investigation of effects of coolant concentration on subcooled boiling and crud deposition on reactor cladding at high pressures and high temperaturesParavastu Pattarabhiran, Vijaya Raghava January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Donald L. Fenton / Increase in demand for energy necessitates nuclear power units to increase their peak power limits. This increase implies significant changes in the design of the nuclear power unit core in order to provide better economy and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Water Reactors (PWR) is the so called ‘Axial Offset Anomaly (AOA)’. An Axial Offset Anomaly (AOA) is the unexpected change in the core axial power distribution during the operation of a PWR from the predicted distribution. This problem is thought to be occurring because of precipitation and deposition of lithiated compounds such as lithium metaborate (LiBO[subscript]2) on the fuel rod. Due to its intrinsic property, the deposited boron absorbs neutrons thereby affecting the total power distribution in the reactor. AOA is thought to occur when there is sufficient build up of crud deposits on the cladding during subcooled nucleate boiling.
Predicting AOA is difficult because there is little information regarding the heat and mass transfer during subcooled nucleate boiling. This thesis describes the experimental investigation that was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of LiBO[subscript]2 and boric acid (H[subscript]2BO[subscript]3) solutions along with deionized water. The experimental data collected includes the effect of coolant concentration, degree of subcooling, system pressure and heat flux on pool boiling heat transfer coefficients. An analysis of deposits formed on the fuel rod during subcooled nucleate boiling is also included in the thesis.
The experimental results reveal that the pool boiling heat transfer coefficient is degraded by the presence of boric acid and lithium metaborate in water. At concentration of 5000 ppm in water, the boric acid solution reduced the heat transfer coefficient by 23% and lithium metaborate solution reduced the heat transfer coefficient by 26%.
|
Page generated in 0.1088 seconds