Spelling suggestions: "subject:"popov for"" "subject:"shopov for""
1 |
Fast Order Basis and Kernel Basis Computation and Related ProblemsZhou, Wei 28 November 2012 (has links)
In this thesis, we present efficient deterministic algorithms
for polynomial matrix computation problems, including the computation
of order basis, minimal kernel basis, matrix inverse, column basis,
unimodular completion, determinant, Hermite normal form, rank and
rank profile for matrices of univariate polynomials over a field.
The algorithm for kernel basis computation also immediately provides
an efficient deterministic algorithm for solving linear systems. The
algorithm for column basis also gives efficient deterministic algorithms
for computing matrix GCDs, column reduced forms, and Popov normal
forms for matrices of any dimension and any rank.
We reduce all these problems to polynomial matrix multiplications.
The computational costs of our algorithms are then similar to the
costs of multiplying matrices, whose dimensions match the input matrix
dimensions in the original problems, and whose degrees equal the average
column degrees of the original input matrices in most cases. The use
of the average column degrees instead of the commonly used matrix
degrees, or equivalently the maximum column degrees, makes our computational
costs more precise and tighter. In addition, the shifted minimal bases
computed by our algorithms are more general than the standard minimal
bases.
|
2 |
Fast Order Basis and Kernel Basis Computation and Related ProblemsZhou, Wei 28 November 2012 (has links)
In this thesis, we present efficient deterministic algorithms
for polynomial matrix computation problems, including the computation
of order basis, minimal kernel basis, matrix inverse, column basis,
unimodular completion, determinant, Hermite normal form, rank and
rank profile for matrices of univariate polynomials over a field.
The algorithm for kernel basis computation also immediately provides
an efficient deterministic algorithm for solving linear systems. The
algorithm for column basis also gives efficient deterministic algorithms
for computing matrix GCDs, column reduced forms, and Popov normal
forms for matrices of any dimension and any rank.
We reduce all these problems to polynomial matrix multiplications.
The computational costs of our algorithms are then similar to the
costs of multiplying matrices, whose dimensions match the input matrix
dimensions in the original problems, and whose degrees equal the average
column degrees of the original input matrices in most cases. The use
of the average column degrees instead of the commonly used matrix
degrees, or equivalently the maximum column degrees, makes our computational
costs more precise and tighter. In addition, the shifted minimal bases
computed by our algorithms are more general than the standard minimal
bases.
|
3 |
Bases of relations in one or several variables : fast algorithms and applications / Bases de relation en une ou plusieurs variables : algorithmes rapides et applicationsNeiger, Vincent 30 November 2016 (has links)
Dans cette thèse, nous étudions des algorithmes pour un problème de recherche de relations à une ou plusieurs variables. Il généralise celui de calculer une solution à un système d’équations linéaires modulaires sur un anneau de polynômes, et inclut par exemple le calcul d’approximants de Hermite-Padé ou d’interpolants bivariés. Plutôt qu’une seule solution, nous nous attacherons à calculer un ensemble de générateurs possédant de bonnes propriétés. Précisément, l’entrée de notre problème consiste en un module de dimension finie spécifié par l’action des variables sur ses éléments, et en un certain nombre d’éléments de ce module ; il s’agit de calculer une base de Gröbner du modules des relations entre ces éléments. En termes d’algèbre linéaire, l’entrée décrit une matrice avec une structure de type Krylov, et il s’agit de calculer sous forme compacte une base du noyau de cette matrice. Nous proposons plusieurs algorithmes en fonction de la forme des matrices de multiplication qui représentent l’action des variables. Dans le cas d’une matrice de Jordan,nous accélérons le calcul d’interpolants multivariés sous certaines contraintes de degré ; nos résultats pour une forme de Frobenius permettent d’accélérer le calcul de formes normales de matrices polynomiales univariées. Enfin, dans le cas de plusieurs matrices denses, nous accélérons le changement d’ordre pour des bases de Gröbner d’idéaux multivariés zéro-dimensionnels. / In this thesis, we study algorithms for a problem of finding relations in one or several variables. It generalizes that of computing a solution to a system of linear modular equations over a polynomial ring, including in particular the computation of Hermite- Padéapproximants and bivariate interpolants. Rather than a single solution, we aim at computing generators of the solution set which have good properties. Precisely, the input of our problem consists of a finite-dimensional module given by the action of the variables on its elements, and of some elements of this module; the goal is to compute a Gröbner basis of the module of syzygies between these elements. In terms of linear algebra, the input describes a matrix with a type of Krylov structure, and the goal is to compute a compact representation of a basis of the nullspace of this matrix. We propose several algorithms in accordance with the structure of the multiplication matrices which specify the action of the variables. In the case of a Jordan matrix, we accelerate the computation of multivariate interpolants under degree constraints; our result for a Frobenius matrix leads to a faster algorithm for computing normal forms of univariate polynomial matrices. In the case of several dense matrices, we accelerate the change of monomial order for Gröbner bases of multivariate zero-dimensional ideals.
|
Page generated in 0.0617 seconds