• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Breast cancer risk and genetic ancestry: a case-control study in Uruguay

Bonilla, Carolina, Bertoni, Bernardo, Hidalgo, Pedro C., Artagaveytia, Nora, Ackermann, Elizabeth, Barreto, Isabel, Cancela, Paula, Cappetta, Mónica, Egaña, Ana, Figueiro, Gonzalo, Heinzen, Silvina, Hooker, Stanley, Román, Estela, Sans, Mónica, Kittles, Rick A. January 2015 (has links)
BACKGROUND: Uruguay exhibits one of the highest rates of breast cancer in Latin America, similar to those of developed nations, the reasons for which are not completely understood. In this study we investigated the effect that ancestral background has on breast cancer susceptibility among Uruguayan women. METHODS: We carried out a case-control study of 328 (164 cases, 164 controls) women enrolled in public hospitals and private clinics across the country. We estimated ancestral proportions using a panel of nuclear and mitochondrial ancestry informative markers (AIMs) and tested their association with breast cancer risk. RESULTS: Nuclear individual ancestry in cases was (mean ± SD) 9.8 ± 7.6% African, 13.2 ± 10.2% Native American and 77.1 ± 13.1% European, and in controls 9.1 ± 7.5% African, 14.7 ± 11.2% Native American and 76.2 ± 14.2% European. There was no evidence of a difference in nuclear or mitochondrial ancestry between cases and controls. However, European mitochondrial haplogroup H was associated with breast cancer (OR = 2.0; 95% CI 1.1, 3.5). CONCLUSIONS: We have not found evidence that overall genetic ancestry differs between breast cancer patients and controls in Uruguay but we detected an association of the disease with a European mitochondrial lineage, which warrants further investigation.
2

Human population history and its interplay with natural selection

Siska, Veronika January 2019 (has links)
The complex demographic changes that underlie the expansion of anatomically modern humans out of Africa have important consequences on the dynamics of natural selection and our ability to detect it. In this thesis, I aimed to refine our knowledge on human population history using ancient genomes, and then used a climate-informed, spatially explicit framework to explore the interplay between complex demographies and selection. I first analysed a high-coverage genome from Upper Palaeolithic Romania from ~37.8 kya, and demonstrated an early diversification of multiple lineages shortly after the out-of-Africa expansion (Chapter 2). I then investigated Late Upper Palaeolithic (~13.3ky old) and Mesolithic (~9.7 ky old) samples from the Caucasus and a Late Upper Palaeolithic (~13.7ky old) sample from Western Europe, and found that these two groups belong to distinct lineages that also diverged shortly after the out of Africa, ~45-60 ky ago (Chapter 3). Finally, I used East Asian samples from ~7.7ky ago to show that there has been a greater degree of genetic continuity in this region compared to Europe (Chapter 4). In the second part of my thesis, I used a climate-informed, spatially explicit demographic model that captures the out-of-Africa expansion to explore natural selection. I first investigated whether the model can represent the confounding effect of demography on selection statistics, when applied to neutral part of the genome (Chapter 5). Whilst the overlap between different selection statistics was somewhat underestimated by the model, the relationship between signals from different populations is generally well-captured. I then modelled natural selection in the same framework and investigated the spatial distribution of two genetic variants associated with a protective effect against malaria, sickle-cell anaemia and β⁰ thalassemia (Chapter 6). I found that although this model can reproduce the disjoint ranges of different variants typical of the former, it is incompatible with overlapping distributions characteristic of the latter. Furthermore, our model is compatible with the inferred single origin of sickle-cell disease in most regions, but it can not reproduce the presence of this disorder in India without long-distance migrations.

Page generated in 0.0771 seconds