Spelling suggestions: "subject:"1population survival"" "subject:"2population survival""
1 |
[en] COLLECTIVE BEHAVIOR OF LIVING BEINGS UNDER SPATIOTEMPORAL ENVIRONMENT FLUCTUATIONS / [pt] COMPORTAMENTO COLETIVO DE ORGANISMOS VIVOS SOB FLUTUAÇÕES ESPAÇO-TEMPORAIS DO MEIO AMBIENTE.EDUARDO HENRIQUE FILIZZOLA COLOMBO 10 January 2019 (has links)
[pt] Organismos vivos têm seus próprios meios de locomoção e são capazes de se reproduzir. Além disto, o habitat no qual os organismos estão inseridos é tipicamente heterogêneo, de modo que as condições ambientais variam no tempo e no espaço. Nesta tese, são propostos e investigados modelos teóricos para compreender o comportamento coletivo de organismos vivos, visando responder questões relevantes sobre a organização e preservação da população utilizando técnicas analíticas e numéricas. Inicialmente, considerando um habitat homogêneo, em que as propriedades estatísticas das condições ambientais são independentes do tempo e do espaço, estudamos como padrões espaço-temporais podem emergir na distribuição da população devido a interações não-locais e investigamos o papel das flutuações ambientais neste processo. Em seguida, assumindo um meio ambiente heterogêneo, analisamos o caso de um único domínio de habitat. Considerando uma classe de equações não lineares, introduzindo flutuações temporais
e interações entre os organismos, fornecemos uma perspectiva geral da estabilidade de populações neste caso, desafiando os conceitos ecológicos anteriores. Em um segundo passo, assumindo uma paisagem complexa fragmentada, consideramos que os indivíduos têm acesso a informações sobre a estrutura espacial do meio. Mostramos que os indivíduos sobrevivem quando as regiões espaciais viáveis estão suficientemente aglomeradas e observamos que o tamanho da população é maximizado quando os indivíduos utilizam parcialmente a informação do meio ambiente. Finalmente, como resultados exatos analíticos não são factíveis em muitas situações importantes, propomos uma abordagem efetiva para interpretar os dados experimentais. Assim, somos capazes de conectar a heterogeneidade do ambiente e a persistência da população, caracterizada pela distribuição de probabilidade para os tempos de vida. / [en] Living entities have their own means of locomotion and are capable of reproduction. Furthermore, the habitat in which organisms are embedded is typically heterogeneous, such that environment conditions vary in time and space. In this thesis, theoretical models to understand the collective dynamics of living beings have been proposed and investigated aiming to address relevant questions such as population organization and persistence in the environment, using analytical and numerical techniques. Initially,
considering an homogeneous habitat, in which the statistical properties of the environmental conditions are time and space independent, we study how spatiotemporal order can emerge in the population distribution due to nonlocal interactions and investigate the role of environment fluctuations in the self-organization process. Further, we continue our investigation assuming an heterogeneous environment, starting with the simplest case of a single habitat domain, and we obtain the critical conditions for population survival for different population dynamics. Considering a class of nonlinear equations, introducing temporal oscillations and interactions among the organisms, we are able to provide a general picture of population stability in
a single habitat domain, challenging previous ecological concepts. At last, assuming a fragmented complex landscape, resembling realistic properties observed in nature, we additionally assume that individuals have access to information about the spatial structure. We show that individuals survive when patches of viable regions are clustered enough and, counter-intuitively, observe that population size is maximized when individuals have partial information about the habitat. Finally, since, analytical exact results are not feasible in many important situations, we propose an effective approach to interpret experimental data. This way we are able to connect environment heterogeneity and population persistence.
|
2 |
Improvements to longitudinal clean development mechanism sampling designs for lighting retrofit projectsCarstens, Herman January 2014 (has links)
An improved model for reducing the cost of long-term monitoring in Clean Development Mechanism
(CDM) lighting retrofit projects is proposed. Cost-effective longitudinal sampling designs use the
minimum number of meters required to report yearly savings at the 90% confidence and 10% relative
precision level for duration of the project (up to 10 years) as stipulated by the CDM. Improvements
to the existing model include a new non-linear Compact Fluorescent Lamp population decay model
based on the results of the Polish Efficient Lighting Project, and a cumulative sampling function
modified to weight samples exponentially by recency. An economic model altering the cost function
to a nett present value calculation is also incorporated.
The search space for such sampling models are investigated and found to be discontinuous and
stepped, requiring a heuristic for optimisation; in this case the Genetic Algorithm was used. Assuming
an exponential smoothing rate of 0.25, an inflation rate of 6.44%, and an interest rate of 10%,
results show that sampling should be more evenly distributed over the study duration than is currently
considered optimal, and that the proposed improvements in model accuracy increase expected project
costs in nett present value terms by approximately 20%. A sensitivity analysis reveals that the expected
project cost is most sensitive to the reporting precision level, coefficient of variance, and reporting / Dissertation (MEng)--University of Pretoria, 2014. / gm2014 / Electrical, Electronic and Computer Engineering / Unrestricted
|
Page generated in 0.0749 seconds