• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methods to create and characteristics of porous poly(vinyl) alcohol for the purpose of facial implants

Bernhard, Kathleen C. 12 January 2015 (has links)
Facial implants are becoming more common in America and across the world. In the United States last year, over 260,000 augmentation and reconstruction surgeries were performed on facial cartilage areas, while over two million soft tissue fillers were administered. The current implants on the market, though, are deficient in three major areas: they are too rigid, susceptible to migration, and require a large incision. Alternatively, dermal fillers lack shape and biodegrade too quickly. Poly(vinyl) alcohol (PVA) cryogel is a promising hydrogel alternative due to its softness, durable nature and ease of cast molding. While biocompatible, it does not elicit a fibrous response with firm adhesion and could migrate. The goal of this study is to develop a biodurable implant material that has soft-tissue elasticity, pores for adhesion, and swelling for small incisions. In this research, multiple porosity inducing methods are applied to PVA cryogel. These include a casting PVA cryogel over a porogen then leaching it in a solvent, a gaseous exothermic reaction, creating composites with biodegradable components, as well as using molds to alter the surface texture. Once created, the samples then underwent a series of tests to determine their mechanical properties which include elasticity, tensile strength, elongation, tear strength, pore size, and porosity. Swelling ratio of nonporous PVA cryogel was also considered. Porous PVA cryogel made with a high PVA weight percentage (30%) showed equivalent mechanical properties to that of cartilage. Porous PVA cryogel manufactured with a lower weight percent (10% and 20%) were shown to have similar elastic properties to that of adipose tissue. The surface texture methods, gas method, casting and leaching method, and composites made with CaPO4 and chitosan were all shown to create pores large enough for ingrowth. Samples created with a porosity large enough to encourage ingrowth include the gas method, casting and leaching method, and the CaPO4 composites. The swelling ratio was shown to increase as the weight percentage of PVA in the samples decreased. These quantified characteristics can be used to select the appropriate porous PVA cryogel required for a range of applications including facial implants.

Page generated in 0.0356 seconds