• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shake table experiments for the determination of the seismic response of jumbo container cranes

Jacobs, Laura Diane 15 November 2010 (has links)
Container cranes represent one of the most critical components of ports worldwide. Despite their importance to port operations, the seismic behavior of cranes has been largely ignored. Since the 1960s, industry experts have recommended allowing cranes to uplift, believing that it would limit the amount of seismic loading. However, modern cranes have become larger and more stable, and the industry experts are now questioning the seismic performance of modern jumbo cranes. The main goal of this research was to experimentally investigate the seismic behavior of container cranes from the general elastic behavior through collapse, including non-linear behavior such as buckling and cross section yielding, utilizing the 6 degree-of-freedom shake tables at the University at Buffalo. The testing was divided into two phases. The first phase of testing was conducted on a 1/20th scale model. The second phase of testing was conducted on a 1/10th scale model, which was designed such that no inelastic action would develop prior to uplift (as is the common design practice). In support of the experiments, finite element models were created to determine what simplifications could be made to the structure to aid in testing. The data collected from the testing has been used to validate finite element models, to give a better understanding of the behavior of container cranes under seismic excitations, validate fragility models, and to develop recommendations and guidelines for the design and testing of container cranes.
2

Seismic performance evaluation of port container cranes allowed to uplift

Kosbab, Benjamin David 31 March 2010 (has links)
The seismic behavior of port container cranes has been largely ignored-by owners, operators, engineers, and code officials alike. This is despite their importance to daily port operations, where historical evidence suggests that port operational downtime following a seismic event can have a crippling effect on the affected local, regional, and national economies. Because the replacement time in the event of crane collapse can be a year or more, crane collapse has the potential to be the "critical path" for post-disaster port recovery. Since the 1960's, crane designers allowed and encouraged an uplift response from container cranes, assuming that this uplift would provide a "safety valve" for seismic loading; i.e. the structural response at the onset of uplift was assumed to be the maximum structural response. However, cranes have grown much larger and more stable such that the port industry is now beginning to question the seismic performance of their modern jumbo container cranes. This research takes a step back, and reconsiders the effect that uplift response has on the seismic demand of portal-frame structures such as container cranes. A theoretical estimation is derived which accounts for the uplift behavior, and finds that the "safety valve" design assumption can be unconservative. The resulting portal uplift theory is verified with complex finite element models and experimental shake-table testing of a scaled example container crane. Using the verified models, fragility curves and downtime estimates are developed which characterize the risk of crane damage and operational downtime for three representative container cranes subjected to a range of earthquakes. This research demonstrates that container cranes designed using previous and current standards can significantly contribute to port seismic vulnerability. Lastly, performance-based design recommendations are provided which encourage the comparison of demand and capacity in terms of the critical portal deformation, using the derived portal uplift theory to estimate seismic deformation demand.

Page generated in 0.0666 seconds