• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of soil properties on the growth and distribution of Portulacaria Afra in subtropical thicket, South Africa

Becker, Carina Helene January 2013 (has links)
Subtropical Thicket is the dominant vegetation biome in the Eastern Cape, and extends through to parts of the Western Cape. It is dominated by Portulacaria afra (spekboom), a woody succulent plant recognised for its importance as an ecosystem engineer and its carbon sequestration potential. Due to excessive grazing from domestic stock, spekboom has been completely removed from some areas. The Subtropical Thicket Restoration Programme (STRP) initiated a large scale restoration programme of planting spekboom cuttings in these degraded areas. Their efforts have been met with varying levels of success and improvement of the programme relies on continuous monitoring and scientific evaluation. I investigated the influence of selected soil properties on spekboom growth, mortality and landscape distribution, at both restoration sites and natural intact areas, and through experiments. Site or location was the most important factor influencing spekboom success at restoration plots, whereby sites in the eastern end of spekboom distribution perform better. Moving westwards slope orientation emerged as an important factor, whereby north facing slopes are preferred by spekboom. Although high levels of soil salinity (NaCl) restricted spekboom growth and affected its health, it could tolerate the levels it was exposed too. Soil pH, above 7, and phosphorous concentration, above 70 mg.kg-1, were the only limiting factors to spekboom survival found in the restoration sites. This preference for acidic soils was mirrored in intact Thicket. However in general, soil is not a major factor influencing spekboom growth and distribution, and spekboom is tolerant of a wide range of soil conditions. Spekbooms constraint is most likely a function of climate, which varies greatly across the biome. This study answered some vital questions regarding the possible influence of soil in spekboom growth and distribution. It disapproved the theory that a catena effect may be responsible for the lack of spekboom growing in bottomland areas. The study also indicates and supports the versatility of spekboom as a plant for restoring degraded lands across a range of different geologies and soil types. To maximise spekboom survival rates, restoration efforts should be focussed towards the eastern end of its distribution and to avoid planting in soils with pH levels higher than 7.
2

Restoration of degraded subtropical thickets in the Baviaanskloof Megareserve, South Africa: the role of carbon stocks and Portulacaria afra survivorship

Powell, Michael John January 2009 (has links)
The semi-arid forms of subtropical thicket in the Eastern and Western Cape have been heavily degraded through unsustainable pastoralism over the last century or more. The degraded areas exhibit a significant loss of above-ground and belowground carbon stocks, and consequently provide an opportunity for restoration through the formal and informal carbon markets. A prerequisite for the attainment of carbon credits is to ensure sound carbon stock baselines prior to effecting restoration. I report on the carbon stocks (including sub-pools) for a number of intact subtropical thicket types, as well as the differentials between the intact and degraded states (including the sub-pools). Total carbon stocks (TCS in t C ha⁻¹) for intact vegetation (to a soil depth 0–25 cm), ranged from 87.73±6.51 to 70.64±17.24. For degraded vegetation (including old lands), TCS (t C ha⁻¹) ranged from 34.05±3.61 to 21.03±2.70. For all vegetation types, the differentials in TCS along the degradation gradient (0–25 cm) are highly significant and strengthen the possibility for carbon credit financing to catalyse the restoration of the degraded semi-arid subtropical thickets. This study has shown a mean loss of 57.23 t C ha⁻¹ in Baviaanskloof spekboom thickets, when measured to a soil depth of 25 cm. Portulacaria afra is a key species within the semi-arid subtropical thickets, being a canopy dominant and a driver of soil nutrient status, but has been largely lost from the degraded landscapes. Degraded semi-arid subtropical thicket vegetation lacks regeneration via seedling recruitment; restoration therefore requires the manual replanting of P. afra using cut truncheons. Survivorship trials were undertaken infield in 2005 to establish restoration protocols for P. afra, with survivorship being recorded in 2006 and 2008. Overall survivorship for all treatments was found to be 43.2±2.8% in 2006, dropping to 35.8±2.7% in 2008. Planting posture (flat or upright) showed the most significant results of all the factors tested in 2006 and 2008. Micro-damming also influenced survivorship in that micro-damming was associated with marginally higher survivorship (47.4 ±2.0% with damming vs. 39.1±1.5% without damming in 2006, and 39.3±1.9% vs. 32.3±1.5% in 2008). Higher planting density only showed a significant positive impact on survivorship in 2008. Neither stem diameter nor clumping significantly affected degree of survival. A key finding in the study has been the non-static nature of P. afra truncheon survivorship, even after being well established (three years since planting). The results from the study will guide the restoration protocols for the restoration of degraded subtropical thickets, where P. afra requires replanting.

Page generated in 0.0698 seconds