• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 8
  • 6
  • 5
  • 5
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Using GPS for TSPI and Flight Termination Capabilities of a Missile Telemetry Section

Kujiraoka, Scott R., Fielder, Russell G. 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The Joint Advanced Missile Instrumentation (JAMI) Program involves the integration of Global Positioning System (GPS) tracking technology into the Test Ranges. GPS Technology will be used for Time, Space, and Position Information (TSPI) as well as Flight Termination purposes. JAMI is currently developing the JAMI TSPI Unit (JTU) and the Flight Termination Safe & Arm (FTS&A) devices. This paper will discuss the current efforts to integrate these JAMI components, off the shelf items (Flight Termination Receivers (FTR), Telemetry Transmitters, Encryptor and Thermal Batteries) and in-house developed devices (PCM Encoder, Tri-band Antenna with integrated Limiter, Filter, and Amplifier) into a five-inch diameter Missile Telemetry (TM) Section. The discussion of the transmission of the data and how the Test Ranges process it is beyond the scope of this paper and is covered in [1].
12

USING COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENTS (CRADA) TO REDUCE THE TRANSITION TO PRODUCTION RISK OF A MISSILE TELEMETRY SECTION

Kujiraoka, Scott R., Fielder, Russell G. 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The Joint Advanced Missile Instrumentation (JAMI) Program’s main thrust has been the integration of Global Positioning System (GPS) tracking technology into the Department of Defense (DoD) Missile Test Ranges. This technology could be used for Time, Space, Position, and Information (TSPI), Flight Termination (FTS), or End Game Scoring purposes. However the Program’s main goal is to develop Proof-of-Concept components only. Transitioning Missile technology developed by the Government to Private Industry, so that it can be economically mass produced, has been quite a challenge. Traditionally, private industry has had to bid on proposals without much detailed information on how these components have been designed and fabricated. These unknown risks, Non-Recurring Engineering (NRE) and Missile Flight Qualification costs, routinely have significantly increased the price of these procurement contracts. In order so that the Fleet can economically utilize these components in the field, Cooperative Research and Development Agreements (CRADA) between the Government and Private Industry have been used to successfully transition Government developed technology to mass production. They can eliminate the NRE and flight qualification costs to provide for an economical and low risk method of providing the Fleet with the latest advances in GPS Tracking Technology. This paper will discuss how this is currently being accomplished in the development of a conformal wraparound instrumentation antenna for a five-inch diameter Missile Telemetry (TM) Section.

Page generated in 0.2661 seconds