Spelling suggestions: "subject:"positionnement para GPS"" "subject:"positionnements para GPS""
1 |
Déformations post-sismiques après le séisme de Maule (Mw8.8, Chili, 2010) : mesures GPS et modélisation en éléments finis pour une asthénosphère viscoélastique / Post-seismic deformation after the Maule earthquake (Mw8.8, Chili, 2010) : GPS measurements and finite element modeling for a viscoelastic asthenosphereKlein, Emilie 10 December 2015 (has links)
L’étude des séismes géants de subduction présente un intérêt de premier ordre, car ils sontsuffisamment puissants pour exciter le manteau et déclencher sa relaxation visco-élastique. Cephénomène est caractérisé par des déformations à grande échelle spatiale (plusieurs milliers dekilomètres) et temporelle (plusieurs décennies). L’étude des déformations post-sismiques en surfacepar géodésie spatiale permet de contraindre les caractéristiques géométriques et rhéologiques del’interface de subduction, ouvrant ainsi la voie à l’étude du cycle sismique dans sa globalité.Le 27 février 2010 se produit le séisme de Mw 8.8, dans la région du Maule, au large du Chili. Lasubduction de la plaque Nazca sous la plaque continentale Sud-Américaine offre, pour la premièrefois, la possibilité de mesurer de manière continue et dense les déformations post-sismiques sur plusde 1500 km. Par ailleurs, plus de 10 ans de campagnes de mesures GPS, ont permis d’imager uncouplage très hétérogène tout au long de l’interface de subduction. L’imbrication alors visible entreles déformations post-sismiques et inter-sismiques, appuyée par l’étude de la sismicité historique,met ainsi en évidence les interactions inter-segments que seuls les modèles visco-élastiques de cyclesismique permettront de mieux comprendre.Cette thèse a été centrée autour de deux axes principaux, qui conduisent vers l’objectif finaldes modèles visco-élastiques de cycle sismique. Le premier et principal objectif est l’étude desdéformations post-sismiques du Maule. J’ai ainsi traité et analysé les cinq ans de données aprèsle séisme afin d’extraire le champ de déformation post-sismique. Ces données ont alors permis decontraindre les modèles visco-élastiques, grâce à la méthode des éléments finis. Un modèle combinéd’afterslip et de relaxation visco-élastique dans l’asthénosphère et dans un chenal à faible viscositétrès profond, permet ainsi d’expliquer le champ de déformation horizontal mais aussi verticalobservé. L’amplitude et la complexité des déformations en champ proche résulte de "l’afterslip",tandis que la relaxation dans le chenal permet de reproduire le très fort soulèvement de la Cordillèredes Andes. Enfin, la relaxation dans l’asthénosphère est responsable de l’extension sur plusieursmilliers de kilomètres des déformations post-sismiques. De plus, la continuité de l’effort de terrainet le traitement des données recueillies a permis de combler l’ultime gap de données. Il a ainsiété possible de déterminer un champ de vitesse inter-sismique continu sur la quasi totalité del’interface. Finalement, même si un modèle de cycle sismique à l’échelle de la subduction Chiliennen’a pas encore pu être réalisé, le modèle de post-sismique apporte déjà de nouveaux indices sur lesinteractions entre les différents segments de l’interface Chilienne, suite au dernier séisme. / The study of giant earthquakes on subduction zone represents a main interest. They are indeedsufficiently powerful to excite the mantle and trigger its viscoelastic relaxation, over a very largespatial (thousands of kilometers) and temporal (several decades) scale. Postseismic deformation,monitored by spatial geodesy, are a proxy to the geometrical and rheological characteristics of thesubduction interface, that will allow us to study the whole seismic cycle.On February 27th 2010 in the region of Maule, Chile, occurs the Mw 8.8 megathrust earthquake.Yet, the subduction of the Nazca plate beneath the continental South-American plate offers, forthe first time, the opportunity to measure continuously and densely the postseismic deformationfollowing the earthquake, over more than 1500 km. Otherwise, more than a decade of GPS repeatedmeasurements allowed to image a very heterogeneous coupling all along the Chilean interface. Thevisible imbrication between postseismic deformation and interseismic loading, supported by historicaland instrumental seismicity, highlights interactions between the segments. Viscoelastic modelsof seismic cycle appears to be the only way to understand these interactions.This PhD focused on two main axes, that will lead to the development of viscoelastic modelsof seismic cycle. The first part was dedicated to the study of postseismic deformation followingthe Maule earthquake. Therefore, we processed and analyzed very precisely GPS data in orderto extract the postseismic pattern and modeled it using the finite elements method. A combinedmodel of afterslip and viscoelastic relaxation in the asthenosphere and in a low viscosity channel,extending deep along the slab, can reproduce the complex deformation pattern, horizontaly and inverticaly. The amplitude and complexity of the near-field deformation result from aseismic slip onthe fault plane, while the great uplift of the Cordillera is reproduced by relaxation in the channel.The far field extension, up to 1600 km, entirely results from relaxation in the asthenosphere. Onthe other hand, the continuity of campaign measurements was the occasion to fill the ultimate gapof data, and thus estimate a continuous interseismic velocity field from the North of the Maulerupture zone up to North Chile. Finally, even if the final viscoelastic models of seismic cycle couldnot be processed yet, the present postseismic model already brings new insights on interactionsbetween the different segments of the Chilean interface, following the last Chilean earthquake.
|
Page generated in 0.105 seconds