Spelling suggestions: "subject:"2positive pap"" "subject:"2positive cpap""
1 |
Approximately Inner Automorphisms of von Neumann FactorsGagnon-Bischoff, Jérémie 15 March 2021 (has links)
Through von Neumann's reduction theory, the classification of injective von Neumann algebras acting on separable Hilbert spaces translates into the classification of injective factors. In his proof of the uniqueness of the injective type II₁ factor, Connes showed an alternate characterization of the approximately inner automorphisms of type II₁ factors. Moreover, he conjectured that this characterization could be extended to all types of factors acting on separable Hilbert spaces. In this thesis, we present a general toolbox containing the basic notions needed to study von Neumann algebras, before describing our work concerning Connes' conjecture in the case of type IIIλ factors. We have obtained partial results towards the proof of a modified version of this conjecture.
|
2 |
Quantum Holonomies : Concepts and Applications to Quantum Computing and InterferometryKult, David January 2007 (has links)
<p>Quantum holonomies are investigated in different contexts.</p><p>A geometric phase is proposed for decomposition dependent evolution, where each component of a given decomposition of a mixed state evolves independently. It is shown that this geometric phase only depends on the path traversed in the space of decompositions.</p><p>A holonomy is associated to general paths of subspaces of a Hilbert space, both discrete and continuous. This opens up the possibility of constructing quantum holonomic gates in the open path setting. In the discrete case it is shown that it is possible to associate two distinct holonomies to a given path. Interferometric setups for measuring both holonomies are</p><p>provided. It is further shown that there are cases when the holonomy is only partially defined. This has no counterpart in the Abelian setting.</p><p>An operational interpretation of amplitudes of density operators is provided. This allows for a direct interferometric realization of Uhlmann's parallelity condition, and the possibility of measuring the Uhlmann holonomy for sequences of density operators.</p><p>Off-diagonal geometric phases are generalized to the non-Abelian case. These off-diagonal holonomies are undefined for cyclic evolution, but must contain members of non-zero rank if all standard holonomies are undefined. Experimental setups for measuring the off-diagonal holonomies are proposed.</p><p>The concept of nodal free geometric phases is introduced. These are constructed from gauge invariant quantities, but do not share the nodal point structure of geometric phases and off-diagonal geometric phases. An interferometric setup for measuring nodal free geometric phases is provided, and it is shown that these phases could be useful in geometric quantum computation.</p><p>A holonomy associated to a sequence of quantum maps is introduced. It is shown that this holonomy is related to the Uhlmann holonomy. Explicit examples are provided to illustrate the general idea.</p>
|
3 |
Quantum Holonomies : Concepts and Applications to Quantum Computing and InterferometryKult, David January 2007 (has links)
Quantum holonomies are investigated in different contexts. A geometric phase is proposed for decomposition dependent evolution, where each component of a given decomposition of a mixed state evolves independently. It is shown that this geometric phase only depends on the path traversed in the space of decompositions. A holonomy is associated to general paths of subspaces of a Hilbert space, both discrete and continuous. This opens up the possibility of constructing quantum holonomic gates in the open path setting. In the discrete case it is shown that it is possible to associate two distinct holonomies to a given path. Interferometric setups for measuring both holonomies are provided. It is further shown that there are cases when the holonomy is only partially defined. This has no counterpart in the Abelian setting. An operational interpretation of amplitudes of density operators is provided. This allows for a direct interferometric realization of Uhlmann's parallelity condition, and the possibility of measuring the Uhlmann holonomy for sequences of density operators. Off-diagonal geometric phases are generalized to the non-Abelian case. These off-diagonal holonomies are undefined for cyclic evolution, but must contain members of non-zero rank if all standard holonomies are undefined. Experimental setups for measuring the off-diagonal holonomies are proposed. The concept of nodal free geometric phases is introduced. These are constructed from gauge invariant quantities, but do not share the nodal point structure of geometric phases and off-diagonal geometric phases. An interferometric setup for measuring nodal free geometric phases is provided, and it is shown that these phases could be useful in geometric quantum computation. A holonomy associated to a sequence of quantum maps is introduced. It is shown that this holonomy is related to the Uhlmann holonomy. Explicit examples are provided to illustrate the general idea.
|
4 |
Dynamics, Processes and Characterization in Classical and Quantum OpticsGamel, Omar 09 January 2014 (has links)
We pursue topics in optics that follow three major themes; time averaged dynamics with the associated Effective Hamiltonian theory, quantification and transformation of polarization, and periodicity within quantum circuits.
Within the first theme, we develop a technique for finding the dynamical evolution in time of a time averaged density matrix. The result is an equation of evolution that includes an Effective Hamiltonian, as well as decoherence terms that sometimes manifest in a Lindblad-like form. We also apply the theory to examples of the AC Stark Shift and Three-Level Raman Transitions.
In the theme of polarization, the most general physical transformation on the polarization state has been represented as an ensemble of Jones matrix transformations, equivalent to a completely positive map on the polarization matrix. This has been directly assumed without proof by most authors. We follow a novel approach to derive this expression from simple physical principles, basic coherence optics and the matrix theory of positive maps.
Addressing polarization measurement, we first establish the equivalence of classical polarization and quantum purity, which leads to the identical structure of the Poincar\' and Bloch spheres. We analyze and compare various measures of polarization / purity for general dimensionality proposed in the literature, with a focus on the three dimensional case. % entanglement?
In pursuit of the final theme of periodic quantum circuits, we introduce a procedure that synthesizes the circuit for the simplest periodic function that is one-to-one within a single period, of a given period p. Applying this procedure, we synthesize these circuits for p up to five bits. We conjecture that such a circuit will need at most n Toffoli gates, where p is an n-bit number.
Moreover, we apply our circuit synthesis to compiled versions of Shor's algorithm, showing that it can create more efficient circuits than ones previously proposed. We provide some new compiled circuits for experimentalists to use in the near future. A layer of "classical compilation" is pointed out as a method to further simplify circuits. Periodic and compiled circuits should be helpful for creating experimental milestones, and for the purposes of validation.
|
5 |
Dynamics, Processes and Characterization in Classical and Quantum OpticsGamel, Omar 09 January 2014 (has links)
We pursue topics in optics that follow three major themes; time averaged dynamics with the associated Effective Hamiltonian theory, quantification and transformation of polarization, and periodicity within quantum circuits.
Within the first theme, we develop a technique for finding the dynamical evolution in time of a time averaged density matrix. The result is an equation of evolution that includes an Effective Hamiltonian, as well as decoherence terms that sometimes manifest in a Lindblad-like form. We also apply the theory to examples of the AC Stark Shift and Three-Level Raman Transitions.
In the theme of polarization, the most general physical transformation on the polarization state has been represented as an ensemble of Jones matrix transformations, equivalent to a completely positive map on the polarization matrix. This has been directly assumed without proof by most authors. We follow a novel approach to derive this expression from simple physical principles, basic coherence optics and the matrix theory of positive maps.
Addressing polarization measurement, we first establish the equivalence of classical polarization and quantum purity, which leads to the identical structure of the Poincar\' and Bloch spheres. We analyze and compare various measures of polarization / purity for general dimensionality proposed in the literature, with a focus on the three dimensional case. % entanglement?
In pursuit of the final theme of periodic quantum circuits, we introduce a procedure that synthesizes the circuit for the simplest periodic function that is one-to-one within a single period, of a given period p. Applying this procedure, we synthesize these circuits for p up to five bits. We conjecture that such a circuit will need at most n Toffoli gates, where p is an n-bit number.
Moreover, we apply our circuit synthesis to compiled versions of Shor's algorithm, showing that it can create more efficient circuits than ones previously proposed. We provide some new compiled circuits for experimentalists to use in the near future. A layer of "classical compilation" is pointed out as a method to further simplify circuits. Periodic and compiled circuits should be helpful for creating experimental milestones, and for the purposes of validation.
|
6 |
Nekomutativni Choquetova teorie / Noncommutative Choquet theoryŠišláková, Jana January 2011 (has links)
- ABSTRACT - Noncommutative Choquet theory Let S be a linear subspace of a commutative C∗ -algebra C(X) that se- parates points of C(X) and contains identity. Then the closure of the Choquet boundary of the function system S is the Šilov boundary relati- ve to S. In the case of a noncommutative unital C∗ -algebra A, consider S a self-adjoint linear subspace of A that contains identity and generates A. Let us call S operator system. Then the noncommutative formulation of the stated assertion is that the intersection of all boundary representa- tions for S is the Šilov ideal for S. To that end it is sufficient to show that S has sufficiently many boundary representations. In the present work we make for the proof of that this holds for separable operator system.
|
Page generated in 0.0422 seconds