• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 193
  • 62
  • 45
  • 18
  • 12
  • 9
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 405
  • 405
  • 405
  • 109
  • 91
  • 85
  • 63
  • 62
  • 59
  • 54
  • 52
  • 51
  • 48
  • 45
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Evaluation of the Altered Pathophysiological Mechanism of the Human Arg302Gln-PRKAG2 Mutation-Induced Metabolic Cardiomyopathy: Studying the Glucose Metabolism Pathway in a Transgenic Mouse Model

Thorn, Stephanie 23 April 2013 (has links)
Characterized by excessive myocardial glycogen deposition, cardiac hypertrophy, frequent cardiac arrhythmias and progressive conduction system disease, the PRKAG2 cardiac syndrome stems from a genetic mutation in the γ2-subunit of AMP-activated protein kinase (AMPK). Although functionally diverse, the main role of AMPK is to modulate cardiac metabolism in response to depleted ATP levels. A comprehensive study of the dysfunctional regulation of AMPK activity involved in the progression of the human PRKAG2 cardiac syndrome is hindered by the limitations of in vitro techniques. Positron emission tomography (PET) imaging with the glucose analogue, FDG, offers a quantitative assessment of myocardial glucose uptake non-invasively. The aim of this thesis was to determine the ability of FDG to detect changes in glucose uptake, storage and metabolism in the heart in relation to AMPK activity and provide insights into the mechanism of PRKAG2 cardiac hypertrophy. To achieve this aim, a transgenic AMPK γ2-subunit Arg302Gln mouse model was evaluated with small animal FDG PET with correlation to biochemical assays of cardiac AMPK activity and the glycogen metabolism pathway. Using the vena cava blood input function, FDG myocardial glucose uptake was reliably assessed in mice for the first time with Patlak modeling. Reduced FDG uptake in the Arg302Gln PRKAG2 mouse model suggested a feedback pathway reducing exogenous glucose uptake due to excessive intracellular glycogen stores. Despite an increase in FDG uptake in the skeletal muscle of the PRKAG2 mutant mice following insulin stimulation, there was no change in cardiac uptake, signifying myocardial insulin resistance. Increased reliance on glucose oxidation by TMZ inhibition of fatty acid oxidation reduced glycogen stores, restored cardiac function and eliminated ventricular preexcitation. The observed reduction in mouse myocardial FDG uptake mirrors the reduction previously observed in the human PRKAG2 patients. The potential now exists to evaluate both progression and therapeutic interventions for the PRKAG2 cardiac syndrome with the transgenic mouse model with translation to the affected patients using FDG cardiac imaging.
42

Validation of a simulation model of intrinsic 176-Lu activity in LSO-based preclinical PET systems

McIntosh, Bryan 07 April 2011 (has links)
The LSO scintillator crystal commonly used in PET scanners contains a low level of intrinsic radioactivity due to a small amount of Lu-176. This is not usually a concern in routine scanning but can become an issue in small animal imaging, especially when imaging low tracer activity levels. Previously there had been no systematic validation of simulations of this activity; this thesis discusses the validation of a GATE model of intrinsic Lu-176 against results from a bench-top pair of detectors and a Siemens Inveon preclinical PET system. The simulation results matched those from the bench-top system very well, but did not agree as well with results from the complete Inveon system due to a drop-off in system sensitivity at low energies that was not modelled. With this validation the model can now be used with confidence to predict the effects of Lu-176 activity in future PET systems.
43

Monte-Carlo simulations of positron emission tomography based on liquid xenon detectors

Lu, Philip Fei-Tung 05 1900 (has links)
The prospects for enhanced Positron Emission Tomography imaging using liquid xenon (LXe) gamma ray detectors had been examined. Monte-Carlo simulations using GEANT4 were performed and the results were used to study the expected performance of a small animal PET scanner in comparison with a simulated conventional small animal scanner (LSO Focus 120). A NEMA-like cylinder phantom and an image contrast phantom were simulated with both scanners to compare performance characteristics. A Compton reconstruction algorithm was developed for the LXe scanner, and its performance and limitations studied.
44

Functional brain activity in Alzheimer patients as studied by multi-tracer positron emission tomography : effects of treatment with cholinesterase inhibitors /

Kadir, Ahmadul, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 5 uppsatser.
45

A PET system comparison utilizing the American College of Radiology accreditation phantom

Borrelli, Leonard Michael. January 2005 (has links)
Thesis (M.S.)--Medical University of Ohio, 2005. / "In partial fulfillment of the requirements for the degree of Master of Science in Biomedical Sciences." Major advisor: Michael J. Dennis. Includes abstract. Document formatted into pages: iii, 82 p. Title from title page of PDF document. Title at ETD Web site: A positron emission tomography (PET) system comparison utilizing the American College of Radiology accreditation phantom. Bibliography: pages 43-44.
46

Development of PET radioligands synthesized from in-target produced [¹¹C] methane

Andersson, Jan, January 2010 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2010. / Härtill 6 uppsatser.
47

Assessment of the effect of cancer and its treatment on PET scan F-18 FDG tracer distribution in pre- and post-treatment and its relation to myocardial tissue uptake

Earla, Janaki Ram Prasad. January 2005 (has links)
Thesis (M.S.)--Medical University of Ohio, 2005. / "In partial fulfillment of the requirements for the degree of Master of Science in Biomedical Sciences." Major advisor: Michael Dennis. Includes abstract. Document formatted into pages: iii, 61 p. Title from title page of PDF document viewed on Aug. 30, 2005. Title at ETD Web site: Assessment of the effect of cancer and its treatment on PET scan F-18 tracer distribution in pre- and post-treatment and its relation to myocardial tissue uptake. Bibliography: pages 53-56.
48

Development of PET radioligands synthesized from in-target produced [¹¹C] methane

Andersson, Jan, January 2010 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2010.
49

Novel methods for 18F-radiolabelling

Calderwood, Samuel January 2016 (has links)
The expansion of [<sup>18</sup>F]-radiolabelling methodologies is vital for the advancement of Positron Emission Tomography (PET) as a medical imaging tool. Novel protocols will simplify access to current PET tracers and allow development of original tracers, potentially enhancing the imaging quality or permit imaging of a wider range of clinical problems. A general introduction is presented in <b>Chapter 1</b>, covering PET, application of fluorine-19 in the pharmaceutical industry, the production of fluorine-18 and the current state-of -art for [<sup>18</sup>F]-radiolabelling. The results chapters are divided in to two parts; <b>Part 1</b> (<b>Chapters 2 - 4</b>) concern the synthesis of [18F]fluoroarenes and <b>Part II</b> (<b>Chapters 5</b> and <b>6</b>) discuss diversity oriented radiofluorination techniques, targeting novel [<sup>18</sup>F]motifs. In <b>Part I</b>, Chapter 2 describes the use of hypervalent iodine reagents to meditate an umpolung approach for fluorination and radiofluorination of N-arylsulfonamides and anilides. <b>Chapter 3</b> again utilises hypervalent iodine reagents, but as spirocyclic iodonium(III) ylide precursors, being applied to semi-automated and automated microfluidic conditions. <b>Chapter 4</b> discusses the development of conditions for the production and isolation of radiopharmaceuticals employing Cu(II)-mediated radiofluorination of aryl boronic pinacol esters. In <b>Part II, Chapter 5</b> discusses the applicability of halogen exchange reactions to reach polyfluorinated motfis and <b>Chapter 6</b> focuses on the application of a single diazo precursor to access three polyfluorinated motifs with single-step reactions. Finally, <b>Chapter 7</b> provides experimental data for compounds discussed in this thesis.
50

Atherosclerotic inflammation imaging using somatostatin receptor-2 positron emission tomography

Tarkin, Jason Michael January 2017 (has links)
Systemic inflammatory networks and local signaling cascades trigger culprit pathogenic mechanisms relating clinical cardiovascular disease (CVD) risk factors to atherosclerotic plaque progression and rupture. Imaging vascular inflammation affords a valuable marker of atherosclerotic disease activity to reveal important mechanistic insights for CVD research, to quantify early anti-inflammatory effects of new atherosclerosis drugs, and, ultimately, to help improve CVD risk prediction. While carotid, aortic, and peripheral arterial inflammation can be measured by 18F-fluorodeoxyglucose (FDG) PET-computed tomography (CT), as a glucose analog, high 18F-FDG signal spillover owing to physiological myocardial muscle metabolism prevents reliable coronary interpretation. Lack of cell specificity, and the influence of hypoxia on 18F-FDG uptake within macrophages and other plaque cells, are further limitations that drive the search for an alternative PET tracer for imaging inflammation in atherosclerosis. Up-regulation of the G-protein coupled receptor somatostatin receptor subtype-2 (SST2) occurs on the cell surface of activated macrophages. The central hypothesis tested in this thesis is that vascular SST2 PET imaging using 68Ga-DOTATATE might offer a more accurate marker of macrophage inflammation than 18F-FDG, with superior coronary imaging and therefore better power to discriminate high-risk vs. low-risk atherosclerotic lesions. Comprehensive molecular, histological and clinical evaluation of this experimental CVD imaging biomarker was undertaken, including a prospective clinical study with head-to-head comparison to 18F-FDG in coronary, carotid, and aortic vasculature. In vitro data showed that (i) target SSTR2 gene expression occurred in “pro-inflammatory” M1 macrophages, (ii) specific 68Ga-DOTATATE ligand binding to SST2 receptors occurred in CD68-positive macrophage-rich carotid plaque regions, and (iii) and carotid SSTR2 mRNA was highly correlated with both the pan-macrophage marker CD68 and in vivo 68Ga-DOTATATE PET signals. In clinical imaging, increased 68Ga-DOTATATE inflammatory signals correctly identified culprit vs. non-culprit arteries in patients with acute coronary syndrome and transient ischemic attack/stroke. 68Ga-DOTATATE also demonstrated good diagnostic accuracy for high-risk coronary CT features, and strong correlations with clinical CVD risk factors and 18F-FDG-defined vascular inflammation. While 18F-FDG also differentiated culprit vs. non-culprit carotid and high-risk coronary arteries, myocardial 18F-FDG overspill rendered coronary scans uninterpretable in most patients. In contrast, 68Ga-DOTATATE allowed unimpeded coronary interpretation in all patients. Findings of this thesis provide compelling evidence, from gene, to cell, to plaque, to patient, that SST2 PET imaging using 68Ga-DOTATATE provides a quantifiable marker of macrophage-related atherosclerotic inflammation and disease activity. Further studies are needed to establish whether 68Ga-DOTATATE PET can improve CVD risk prediction when added to current clinical methods, or offer a novel imaging platform to rapidly test the anti-inflammatory capacity of emerging atherosclerosis drugs. Broader translational applications of 68Ga-DOTATATE PET include possible use in diagnosis and therapeutic monitoring of vasculitis, endocarditis, myocarditis, and other manifestations of cardiovascular inflammation.

Page generated in 0.0937 seconds