Spelling suggestions: "subject:"possibility measures"" "subject:"ossibility measures""
1 |
Solving multiobjective mathematical programming problems with fixed and fuzzy coefficientsRuzibiza, Stanislas Sakera 04 1900 (has links)
Many concrete problems, ranging from Portfolio selection to Water resource
management, may be cast into a multiobjective programming framework. The
simplistic way of superseding blindly conflictual goals by one objective function let no
chance to the model but to churn out meaningless outcomes. Hence interest of
discussing ways for tackling Multiobjective Programming Problems. More than this,
in many real-life situations, uncertainty and imprecision are in the state of affairs.
In this dissertation we discuss ways for solving Multiobjective Programming
Problems with fixed and fuzzy coefficients. No preference, a priori, a posteriori,
interactive and metaheuristic methods are discussed for the deterministic case. As
far as the fuzzy case is concerned, two approaches based respectively on possibility
measures and on Embedding Theorem for fuzzy numbers are described. A case
study is also carried out for the sake of illustration. We end up with some concluding
remarks along with lines for further development, in this field. / Operations Research / M. Sc. (Operations Research)
|
2 |
Solving multiobjective mathematical programming problems with fixed and fuzzy coefficientsRuzibiza, Stanislas Sakera 04 1900 (has links)
Many concrete problems, ranging from Portfolio selection to Water resource
management, may be cast into a multiobjective programming framework. The
simplistic way of superseding blindly conflictual goals by one objective function let no
chance to the model but to churn out meaningless outcomes. Hence interest of
discussing ways for tackling Multiobjective Programming Problems. More than this,
in many real-life situations, uncertainty and imprecision are in the state of affairs.
In this dissertation we discuss ways for solving Multiobjective Programming
Problems with fixed and fuzzy coefficients. No preference, a priori, a posteriori,
interactive and metaheuristic methods are discussed for the deterministic case. As
far as the fuzzy case is concerned, two approaches based respectively on possibility
measures and on Embedding Theorem for fuzzy numbers are described. A case
study is also carried out for the sake of illustration. We end up with some concluding
remarks along with lines for further development, in this field. / Operations Research / M. Sc. (Operations Research)
|
Page generated in 0.0694 seconds