• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hyperbranched conjugated polymers: an investigation into the synthesis, properties and postfunctionalization of hyperbranched poly(phenylene vinylene-phenylene ethynylene)s

Kub, Christopher 07 July 2010 (has links)
There are two general ways to introduce functionalities into a polymeric structure: functionalization of the monomeric units before polymerization and postfunctionalization of the preformed polymer. Building libraries of polymers with different functionalities can be completed with significantly less effort by the second method, as each postfunctionalization of a single batch of polymeric backbone can involve as little as one synthetic step. One method of building a polymeric backbone for postfunctionalization involves the synthesis of hyperbranched conjugated polymers (HCPs) from AB2 monomeric units. A polymer formed from n AB2 monomeric units should contain n reactive B groups, which act as sites of functionalization. Utilizing this principle, two different hyperbranched poly(phenylene vinylene-phenylene ethynylene) scaffolds were synthesized and studied in both their inherent properties and functionalization. The first HCP synthesized was compared against a monomeric cruciform model and a linear polymer with a similar structure. The hyperbranched polymer has red-shifted absorption and emission in comparison to the cruciform model and linear polymer. The HCP quenches paraquat more efficiently than the linear polymer by a factor of about two, suggesting a greater rate of energy transfer. The functionalization of HCPs was studied; iodine groups decorating the HCPs were replaced with terminal alkynes by Pd-catalyzed coupling, providing a library of 24 differently functionalized HCPs. Elemental analyses of the postfunctionalized polymers show nearly complete substitution of the iodine groups. The postfunctionalized polymers show increased fluorescence compared to the original iodine decorated polymers, due to the loss of the heavy atom effect inducing iodine groups. The emissions of the postfunctionalized polymers in solution show a strong dependence on the groups attached to the conjugated structures, with emission maxima ranging from 505 nm to 602 nm; quantum yields range from 0.7% to 25%. Solid-state emission studies show stronger and more red-shifted spectra compared to emissions observed in solution.

Page generated in 0.0928 seconds