• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Role of Whole-body Vibration in the Prevention of Postmenopausal Osteoporosis

Slatkovska, Lubomira 25 July 2013 (has links)
Whole-body vibration (WBV) was recently introduced as a potential modality for strengthening bones, and this thesis was set out to investigate whether it plays a role in the prevention of postmenopausal bone loss. First, effects of WBV on bone mineral density (BMD) were systematically evaluated in previous randomized controlled trials (RCTs) in postmenopausal women. Second, a RCT of 202 postmenopausal women with primary osteopenia not on bone medications was conducted to investigate the effects of WBV at 0.3g and 90 Hz versus 0.3g and 30 Hz versus controls on various bone outcomes, as measured by dual-energy x-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT), and quantitative ultrasound (QUS). In the systematic evaluation of previous RCTs, statistically significant increase in areal BMD (aBMD) at the hip was found in postmenopausal women receiving WBV versus controls, but the effect was small and may have been due to study bias. Also, WBV was not found to influence aBMD at the lumbar spine or volumetric BMD (vBMD) at the distal tibia in the systematic evaluation. In the RCT conducted in this thesis, no statistically significant effects of WBV were found on aBMD at the femoral neck, total hip or lumbar spine, as measured by DXA, or on vBMD or bone structure parameters at the distal tibia or distal radius, as measured by HR-pQCT. Further in this RCT, a statistically significant decrease was observed in QUS attenuation at the calcaneus in women receiving 90 Hz or 30 Hz WBV compared to controls. This may have been due to heel bone or soft tissue damage, although the effect was small and may not be clinically important. In conclusion, this investigation of postmenopausal women did not find clinically relevant benefits of WBV on osteoporotic-prone skeletal sites, including the hip, spine, tibia or radius, while potentially harmful effects on heel bone and/or soft tissue was observed in response to WBV. Thus based on this thesis, WBV is currently not recommended for the prevention of bone loss in community-dwelling postmenopausal women with primary osteopenia.
2

The Role of Whole-body Vibration in the Prevention of Postmenopausal Osteoporosis

Slatkovska, Lubomira 25 July 2013 (has links)
Whole-body vibration (WBV) was recently introduced as a potential modality for strengthening bones, and this thesis was set out to investigate whether it plays a role in the prevention of postmenopausal bone loss. First, effects of WBV on bone mineral density (BMD) were systematically evaluated in previous randomized controlled trials (RCTs) in postmenopausal women. Second, a RCT of 202 postmenopausal women with primary osteopenia not on bone medications was conducted to investigate the effects of WBV at 0.3g and 90 Hz versus 0.3g and 30 Hz versus controls on various bone outcomes, as measured by dual-energy x-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT), and quantitative ultrasound (QUS). In the systematic evaluation of previous RCTs, statistically significant increase in areal BMD (aBMD) at the hip was found in postmenopausal women receiving WBV versus controls, but the effect was small and may have been due to study bias. Also, WBV was not found to influence aBMD at the lumbar spine or volumetric BMD (vBMD) at the distal tibia in the systematic evaluation. In the RCT conducted in this thesis, no statistically significant effects of WBV were found on aBMD at the femoral neck, total hip or lumbar spine, as measured by DXA, or on vBMD or bone structure parameters at the distal tibia or distal radius, as measured by HR-pQCT. Further in this RCT, a statistically significant decrease was observed in QUS attenuation at the calcaneus in women receiving 90 Hz or 30 Hz WBV compared to controls. This may have been due to heel bone or soft tissue damage, although the effect was small and may not be clinically important. In conclusion, this investigation of postmenopausal women did not find clinically relevant benefits of WBV on osteoporotic-prone skeletal sites, including the hip, spine, tibia or radius, while potentially harmful effects on heel bone and/or soft tissue was observed in response to WBV. Thus based on this thesis, WBV is currently not recommended for the prevention of bone loss in community-dwelling postmenopausal women with primary osteopenia.
3

Long chain polyunsaturated fatty acids and their possible interaction with phytoestrogens : impact on bone and bone cell function in vivo and in vitro : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand

Poulsen, Raewyn Carol January 2007 (has links)
Inflammation is a major contributor to postmenopausal bone loss. Various long chain polyunsaturated fatty acids (LCPUFAs), particularly those of the n-3 family, are known to have anti-inflammatory activity and may have a role in minimising postmenopausal bone loss. The objectives of this thesis were to determine whether some LCPUFAs have greater bone-protective effects than others; to identify some of the mechanisms of action of LCPUFAs in bone and to explore the possibility that combined treatment with LCPUFAs and phytoestrogens offers greater bone-protective effects than either treatment alone. Using the ovariectomised rat model for postmenopausal bone loss, the relative effectiveness of eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3) and gamma-linolenic acid (GLA, 18:3n-6) in minimising bone loss post-ovariectomy was investigated. GLA exacerbated bone loss post ovariectomy in rats. In vitro, treatment of MC3T3-E1/4 osteoblast-like cells with GLA resulted in greater membrane-bound RANKL expression suggesting a possible stimulatory effect of GLA on osteoclastogenesis and osteoclast activity. EPA had no effect on overall bone mass in vivo. DHA significantly ameliorated ovariectomy-induced bone loss possibly by increasing plasma IGF-1 concentration, modulating vitamin D metabolism and, as observed in a second study, by increasing the concentration of gamma-carboxylated osteocalcin. In vitro both EPA and DHA reduced the prostaglandin E2 (PGE2)-induced increase in membrane-bound RANKL expression in MC3T3-E1/4 osteoblast-like cells. However as RANKL-independent pathways are believed to be largely responsible for the ovariectomy-induced increase in osteoclastogenesis in vivo, inhibition of RANKL expression may not significantly contribute to the prevention of ovariectomy-induced bone loss. In a second study in ovariectomised rats, combined treatment with DHA and 17β-oestradiol was associated with significantly higher femur bone mineral content than either treatment alone. However, no beneficial effects of combined treatment with DHA and either of the phytoestrogens genistein or daidzein, on bone mass were apparent. In vitro, co-treatment of TNF-α - exposed MC3T3-E1/4 cells with DHA and 17β-oestradiol was associated with a higher cell number compared to either treatment alone indicating a protective effect of combined treatment against the cytotoxic and/or anti-proliferative effects of TNF-α. In contrast, combined treatment of MC3T3-E1/4 cells with DHA and genistein, but not daidzein, was associated with significantly lower cell number than either treatment alone. As genistein, but not daidzein, is a tyrosine kinase inhibitor, this may indicate that DHA requires tyrosine kinase activity for its protective effect on cell number in TNF-α - exposed osteoblasts. Whether DHA itself is bioactive in bone cells or whether lipid mediators formed from DHA are responsible for the observed bone-protective effects is unknown. Using lipid mediator lipidomic analysis, the presence of DHA-derived lipid mediators in bone marrow in quantities known to be physiologically significant in other tissues was confirmed. Further research into the effects of these lipid mediators in bone and confirmation of the mechanisms of action of DHA in bone cells is required. This thesis demonstrates that consumption of DHA provides some protection against ovariectomy-induced bone loss in vivo and mitigates the effects of inflammation on RANKL signalling and osteoblast cell number in vitro. The bone-protective effects of DHA are complemented by co-treatment with 17β-oestradiol but may be inhibited by co-treatment with the phytoestrogens daidzein or genistein.

Page generated in 0.098 seconds