• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Wheelchair Robot for Active Postural Support (WRAPS) for Users with Trunk Impairments

Ophaswongse, Chawin January 2021 (has links)
People with severe trunk impairments cannot maintain or control upright posture during sitting or reaching out with the upper body. Passive orthoses are clinically available to support the trunk and promote the use of upper extremities in this population. However, these orthoses only rigidly position the torso on a wheelchair but do not facilitate movement of the trunk. In this dissertation, we introduce a novel active-assistive torso brace system for upperbody movements by a subject while seated. We have named this system as Wheelchair Robot for Active Postural Support (WRAPS). We propose designs of two robots, one for the pelvis and the other for the trunk. Each of the two devices has a parallel chain architecture to accommodate the range of motion (ROM), respectively for the pelvic and thoracic segments. The first thoracic robot was designed for the upper trunk motion relative to the pelvis. It has a 2[RP]S-2UPS architecture which provides four degrees-of-freedom (DOFs) to the end-effector placed on the upper trunk. The second is a pelvic robot which is designed to orient the pelvic segment relative to the seat. It has a 3-DOF [RRR]U-2[RR]S architecture, coupled with translation to accommodate pelvic movements relative to the seat. These robot architectures are synthesized based on human movement data. WRAPS can modulate the displacement of both the pelvic and the thoracic segments. Additionally, the forces can be applied on the torso through the end-effectors of these robots. Each of the robot prototypes was evaluated with able-bodied subjects to assess the device wearability, kinematic performances, and control system.
2

Robotic Strategies to Characterize and Promote Postural Responses in Standing, Squatting and Sit-to-Stand

Luna, Tatiana D. January 2022 (has links)
In people with neuromotor deficits of trunk and lower extremities, maintaining and regaining balance is a difficult task. Many undergo rehabilitation to improve their movement capabilities, health, and overall interactions with their environment. Rehabilitation consists of a set of interventions designed to improve the individual’s mobility and independence. These strategies can be passive, active or task-specific and are dependent on the type of injury, how the individual progresses, and the intensity of the activity. Some of the common rehabilitation interventions to strengthen muscles and improve coordination are accomplished either by the manual assistance of a physical therapist, bodyweight suspension systems or through robotic-assisted training. There are several types of rehabilitation robotic systems and robotic control strategies.However, there are few robotic studies that compare their robotic device’s control strategy to common rehabilitation interventions. This dissertation introduces robotic strategies centered around rehabilitation ones and characterizes human motion in response to the robotic forces. Two cable-driven robotic systems are utilized to implement the robotic controllers for different tasks. Further details of the two cable-driven systems are discussed in Chapter 1. The validation and evaluation of these robotic strategies for standing rehabilitation is discussed in Chapter 2. A case study of a robotic training paradigm for individuals with spinal cord injury is presented in Chapter 3. Chapter 4 introduces a method to redistribute individuals’ weight using pelvic lateral forces. Chapter 5 and 6 characterizes how young and older groups respond to external perturbations during their sit-to-stand motion. This dissertation presents robotic strategies that can be implemented as rehabilitation interventions. It also presents how individuals’ biomechanics and muscle responses may change depending on the force control paradigm.These robotic strategies can be utilized by training individuals to improve their reactive and active balance control and thus reduce their risk of falling.

Page generated in 0.1336 seconds